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Preface

Solid state physics has grown rapidly in the past two decades. Unprec-
edented developments in technology have been accompanied by a sub-
stantial refinement and extension of the fundamental theory. New
phenomena have been discovered and interpreted, and old puzzles
clarified. The one-electron theory has come to maturity with the
development of powerful methods of calculation and successful applica-
tions to real crystals. It is now possible to describe the results of numerous
experiments concerning both semiconductors and metals in the language
of band theory in a consistent fashion with the use of a small number
of parameters. Calculations from first principles are able to reproduce
most of the important qualitative features and some quantitative char-
acteristics of the energy levels of actual materials.

This book contains a discussion of the principles and methods of the
calculation of the energy levels of electrons in crystals. In Chapter 1,
the language of band theory is developed with attention to the general
features of band structures which may be deduced from considerations
of crystal symmetry. Chapter 2 includes a description of the principal
methods for the solution of the Schrédinger equation in a periodic potential
together with a survey of the problems encountered in the construction
of the potential function in the Hartree-Fock approximation. Some of
the results of experimental investigations of the band structures of
materials, including the alkali metals, the noble metals, and common
semiconductors, are surveyed in Chapter 3, and compared with theoret-
ical calculations. The effects of external perturbations, including electric
and magnetic fields, on band structures are considered in Chapter 4,
together with a discussion of the energy levels of electrons bound to point
impurities. A calculation of optical constants is also included.

Some major omissions should be noted. Transport theory is not
discussed. Alloys and disordered materials are not considered. Many-
body theory, the electron lattice interaction, and superconductivity are

vii



viii PREFACE

not included. The neglect of these topics is not in any respect an attempt
to deny their fundamental place in the theory of solids, but rather seemed
to be required if the size of this book and the labor of preparation were
to be restricted to reasonable limits.

I am indebted to Dr. Thomas Wolfram for many valuable discussions,
and to Miss Sara Cecil for the preparation of the manuscript.

JosepH CALLAWAY
Riverside, California
June 1963
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Chapter 1

The Language of Band Theory

One of the principal objectives of physics in this century is to account
for the observed properties of macroscopic solid bodies on the basis of
the quantum mechanical theory of the behavior of atomic particles.
Success will have been achieved when it becomes possible to calculate
the quantities which describe the constitution of materialsand their response
to alterations of environment from knowledge of the component elements
and their proportions. It is already possible, in principle, to perform these
computations, since the forces between charged particles are known and
the basic principles of quantum mechanics and quantum statistics are
firmly established. Practically, rigorous procedures tend to produce
mathematical problems of unmanageable complexity except in idealized
cases.

It is necessary to concentrate study on those aspects of the structure
of materials which seem amenable to approximate analysis. Much can
be inferred from a description of the energy levels of electrons in solids.
It can be determined immediately whether a material should be a metal
or an insulator; calculations of binding energies are possible, and some
of the essential ingredients are available for determination of transport
coefficients. This book contains a discussion of the general nature of
the energy levels, the principal methods of calculation, the effect of
external electric and magnetic fields on a given set of levels, and the
principles underlying some of the experimental procedures for testing
our ideas.

It is already implied, in speaking of energy levels of electrons in solids,
that it is possible to separate the descriptions of the electronic and nuclear

1



2 CHAPTER 1. THE LANGUAGE OF BAND THEORY

motions, and that the influence of the nuclear motions on the electrons
is small. This is a famous and fundamental approximation which, however,
occasionally fails, as in the phenomena of superconductivity. The problem
of determining the effects of the interaction of the electrons with each
other is also both serious and very difficult. A fundamental idealization
which is often made is to restrict attention to the states of a single electron
in a rigid, infinite, periodic lattice. The assembly of many electrons is
then regarded as a collection of noninteracting particles in the periodic
potential, occupying states in accord with the rules of the Fermi statistics
Fortunately, it turns out that many of the properties of real materials
can be described successfully in the language developed for this simple
model. Quantitative results can even be obtained in some interesting
cases. The present discussion is largely based on this approximation,
but there will be occasional comments on its accuracy, and the means by
which it may be improved.

1.1 Bloch’s Theorem

The periodicity of a crystal is described by specifying a set of vectors
R;, such that if V(r) is the potential energy of an electron at position r
in the crystal, this potential is unchanged if the point of observation is
displaced by any vector R, which belongs to a set of translation vectors.

Vir+ R;) = V(r) (1.1)

All the vectors R; may be expressed in terms of three independent
primitive translation vectors a,, a,, a; in the following way:

R,’ = N1 4 + 1o ay -+ ni3 ag (12)

The n,; are integers. It is convenient to introduce a set of translation
operators T(R,) which have the property that, if f(r) is any function of
position,

T(R)f(r) = f(r + Ri) (1.3)

These operators evidently form a group; they also commute with each
other. As a result of (1.1}, the translation operators commute with the
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Hamiltonian operator for one electron in the periodic potential. This
Hamiltonian is the sum of the kinetic energy operator and the potential
energy mentioned previously:

He—Ppiy 1.4)
=5 V) (1.

thus, we have:
[T(R),H]=0 (1.5)

Consequently, the wave function of the electron may be chosen to be
simultaneously an eigenfunction of the energy and of all the translations.
Let ¢ be such an eigenfunction:

T(R)gh(r) = (r + Ri) = L (r) (1.6)
If we multiply this equation by its complex conjugate, we have
(e + Ra)[? = [ 4i]2 [h(r) |2

Since the electron distribution determines in part the potential in
which the electrons move, it is necessary for consistency that the electron
distribution have the same periodicity as the potential. Consequently,

[h(r + R)[? = [b(r)[? (1.7)
It follows that A, must be a complex number of modulus unity:
}-i = eiei

Now let two translation operators, say T(R,) and T(R;), act in
succession. This translation is equivalent to that produced by the single
operator T(R; + R,). ‘

T(R;) T(Rajih(r) = (r + Ri + R;) = 4; L ih(r) = 4; 1 4p(r)

Evidently, the product of the eigenvalues corresponding to different
displacements must be equal to the eigenvalue of the combined translation.
This condition will be satisfied if

6; =k- R

where k is an arbitrary vector that is the same for each of the operations.
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The wave function of an electron in a periodic potential is characterized
by the particular vector k which appears in the eigenvalue of each transla-
tion operation, and the vector k is generally written as a subscript on .
The allowed values of k will be determined in Section 1.3.

We have now established Bloch’s theorem (Bloch, 1928):

duclr + Ri) = & B () (1.8)

This theorem may be interpreted as a boundary condition on the solution
of the Schrédinger equation in the periodic potential.
It is desirable to define a function #,(r) by the relation

l,[lk(l‘) = eik"uk(r) (1.9)

Then from Bloch’s theorem
Ju(r - R)) = SE TRy w(r + R)) = JE R (6% T 23 (r) ]

Thus #, must be unchanged by a translation through any lattice vector:
It has the full periodicity of the potential.

1.2 The Reciprocal Lattice

It is convenient to define a set of vectors K; through the relation
K]' . Ri = 27m¢,- (110)

The quantity #;; is to be an integer (negative and zero values included).
A relation of this form is required to hold for all translation vectors R;.
The end points of all vectors K; define a lattice of points, which is called
the reciprocal lattice.

In (1.2) the lattice translation vectors R, were expressed as linear
combinations of the basic translation vectors a; with integer coefficients.
A similar relation holds for the reciprocal lattice vectors K.

K;=giih, + gioby + giaby (1.11)

The numbers g;; are integers and the vectors b; are fundamental translation
vectors of the reciprocal lattice. The defining relation for the K;, Eq. (1.10),
always holds provided that vectors b, satisty

b7'3i=2:’£ 6,']' (1.12)
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Vectors b; that satisfy this relation can always be found. In particular,

27(a, X ag) _ 2m(ay; X ay) _ 2n(a; X a,)

; = ; = (1.13)
a; - (2, X ay) 2T A (ay X ay) 27 a, - (ay X a,)

L=
We now have a prescription for constructing the reciprocal lattice from
the direct lattice vectors a,.

Now consider plane waves of the type

By

K

in which K is a reciprocal lattice vector. Such functions have the full
translational periodicity of the potential. This is easily seen since, by
(1.10),

K. .r

r:_—51 s

PR Ry 2min K

This is the same periodic property possessed by the function #, defined
in (1.9). Hence #, may be expanded as a Fourier series in these plane
waves:

u = ) ™" (1.14)
N
The wave function s, can then be expressed as

= D) ai e BT (1.15)

s

This expression for ¢, obviously satisfies the boundary conditions imposed
by Bloch’s theorem. It is still necessary to choose the coefficients ay
so that the one-particle Schrédinger equation is satisfied. This expansion
1s the basis of some of the techniques for the calculation of wave functions
in solids which will be explored in Chapter 2.

1.3 The Brillouin Zone

It is desirable to construct a unit cell in the reciprocal lattice that
has the full symmetry of this lattice. This may be done as follows. One
particular lattice point is chosen as the origin. The vectors connecting
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this point with other lattice points are drawn. The planes that are
perpendicular bisectors of these vectors are then constructed. The smallest
solid figure containing the origin bounded by these planes is the unit
cell of the reciprocal lattice, usually called the Brillouin zone (Brillouin,
1931). It is usually necessary to consider only a small number of sets of
bisecting planes.!

Points k on the surface of the Brillouin zone must satisfy the condition
k?=(k — K,)?2 or K,2— 2k- K, =0 (in which K, is some reciprocal
lattice vector).

Consider two position vectors in k-space, k', k’’, which satisfy the
relation

k" =k + K; (1.16)
The vectors k' and k” are said to be equivalent. Evidently
B R (1.17)

for all lattice vectors R,. Consequently, wave functions ., and ., satisfy
the same boundary conditions and may then describe the same state.
From the definition of the Brillouin zone, it follows that no two points
in the interior of the zone satisfy (1.16), whereas each exterior point is
related to an interior point by a relation of this type. A point on the
surface of the zone will be equivalent to at least one other point on the
surface.

It is possible to characterize all the electron states in the periodic
potential by k vectors lying in the interior or on the surface of the Brillouin
zone. The energy of these states may be regarded as a function of the
k vector. This function will be multivalued: there will be many different
energies for a single k. As long as we only consider values of k lying
inside the zone, the energy will be a continuous function of k (this
statement will be proved in Section 1.7); a single such continuous manifold
is referred to as an energy band. Discontinuities in the energy may occur
only on the surface of the zone.

The restriction of the definition of E (k) to k values inside the Brillouin
zone is only a convention. Since k-space may be filled by a set of Brillouin

1 If this procedure is applied to construct a unit cell in the direct lattice, the
result is a figure known as the Wigner-Seitz cell.
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zones, one centered on each lattice point of the reciprocal lattice, an
alternative convention is to define the energy as a function of k throughout
the entire k-space by requiring it to be a periodic (and multivalued)
function of k, repeating its values in each zone.?

As examples of the foregoing considerations, let us examine the
body-centered cubic and face-centered cubic lattices. These are of
particular importance since they are the most symmetric structures
assumed by single elements. In the former case, possible choices for the
three primitive translation vectors are (2/2) (i + j + k), (2/2) (i + j — k),
and (a4/2) (i — j + k), where a is the lattice parameter. For the face-
centered cubic lattice we have vectors (a/2) (j + k), (2/2) (i — k), and

H
J |
Fi1Gg. 1. Brillouin zone for the body-centered cubic lattice. Points and lines of
symmetry are indicated.

(a/2) i — j). If the basis vectors of the reciprocal lattice are now
constructed according to Eq. (1.13), it is immediately seen that the
lattice reciprocal to the body-centered cubic structure is face-centered
cubic. The basic reciprocal lattice vectors are those given for the face-
centered cubic structure with a/2 replaced by 2z/a, and the lattice

2 In the literature one occasionally encounters so-called higher Brillouin zones.
These are figures formed in the construction procedure previously discussed by
planes bisecting vectors to more distant neighbors. In the present work, only a
single Brillouin zone will be considered for each lattice.
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reciprocal to the face-centered cubic is body-centered cubic. The Brillouin
zones for these structures may be constructed according to the procedures
given. The zones are shown in Figs. 1 and 2. The symmetry points of
the zone have been labeled according to the notation introduced by
Bouckaert, Smoluchowski, and Wigner (Bouckaert et al., 1936).

Fi1c. 2. Brillouin zone for the face-centered cubic lattice. Points and lines of
symmetry are indicated.

In both cases the center of the zone is designated I". The 100, 111,
and 110 axes are labeled 4, A, and 2, respectively. In the zone for the
body-centered cubic lattice, the principal “‘symmetry points’ of the zone
are I', H, P, and N. The last three points are the intersections of the 4, A4,
and X axes (respectively) with the faces of the zone. A particular point A
has coordinates (27/a) (1, 0, 0). All six points H can be obtained from the
original one by adding reciprocal lattice vectors of the type
(27/a) (— 1,1, 0) or (2n/a)(— 2, 0, 0), etc. All these points are equivalent
in the sense of (1.16). A particular point P has a k vector (2z/a) (4, , 3).
It is easily seen that three other points P are equivalent to it:
@2nja) (— 4 — 4, %), @n/a) (— 4 4 —3), and (27/a) (b, — 3, — ).
However, the points with coordinates (2=/a) (— %, — &, — 4),
(2m/a) (— 3, %, %), C=/a) (3, — %, %), and (2=/a) (4, %, — }), whlle equiv-
alent to each other, are not equivalent to any of the points in the first
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group. There are two inequivalent points P. The twelve points N have
k vectors of the type (2n/a) (}, 4,0). These points are equivalent in
pairs, the point defined being equivalent to the point (2x/a) (— %, — 4, 0).
There are six inequivalent points N.

In the Brillouin zone for the face-centered cubic lattice, the points X
have the same coordinates as the points H discussed previously, but
since the reciprocal lattice vectors are now of the type (27/a) (1, 1, 1),
(27/a) (2, 0, 0), etc., each point X is equivalent to only one other such
point. There are three inequivalent points X. Similarly, the point L
with coordinates (27z/a) (3, $, 3) is equivalent to point (2n/a) (— 4, — %, — %)
but not to any others; thus, there are four inequivalent points L. One
also finds there are twenty-four corner points W with coordinates
27(1, %, 0) but these are equivalent in groups of four. For instance, the
points  (2z/a) (1, 4, 0), (2xfa) (— 1, ,0), (2=/a) (0, — %, 1), and
(27/a) (0, — 4, — 1) are equivalent. There are six inequivalent points.
Finally, each of the twelve points K of the type (27/a) (1, £, 0) is equivalent
to two of the twenty-four points U, whose coordinates are (for the
particular K given) (2z/a) (— }, — 1,1) and (2nja) (— }, — 1 — 1).

1.4 Energy Bands in the Free Electron Limit

We consider now the limiting case in which the periodic potential of
the lattice structure becomes arbitrarily weak while the symmetry
properties of the wave functions are preserved. Any function of the form
¢'®n-T is then an acceptable #,, so the energy of a state of wave vector
k is just

h2
E = o [k+ K2 (1.18)

Here K, isanyreciprocal lattice vector. It turns out, somewhat surprisingly,
that the energy bands of electrons in many metals can be rather well
approximated by this simple expression.

To illustrate the method and results, we shall consider the body-
centered cubic lattice. We shall write the vector k in the form
(27/a) (%, v, z) and the reciprocal lattice vector K, as (2n/a) (ny, #y, 7).
Then if we define A = ma? E/2k? n2 we have
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A= (x4 m)? 4 (3 + ) + (2 my)? (1.192)

Consider first the 100 axis, 4; y =2=0. The lowest band is
characterized by #,, 55, #; = 0, and is just the parabola 4; = x2. The
next highest bands are those found by taking #,, n,, #; from the first
reciprocal lattice vector type 1, 1, 0. These give:

lo=(x—1)2+41; Ay = x4+ 2; LA=01+2x2+1 (1.19b)

Each of these bands is fourfold degenerate: there are four possible choices
of reciprocal lattice vectors which lead to the above expressions. Turning
to reciprocal lattice vectors of the (200) type, we have

Ay = (x — 2)%; Ag= 22+ 4; Ay = (x4 2)2 (1.19c)

The second of these is fourfold degenerate; the other bands are not
degenerate.

On the 111 axis, x =y = 2 << 4. We have, considering the same
reciprocal lattice vectors as above, the following bands:

h=3x  R=2x— )P4 l=3442; (1.194)
Aa=2(x+1)24+ 2% A= (x—2)2422% A= (x+2)2+ 2x2

A, is a nondegenerate band; 4; is sixfold degenerate; the others given
are triply degenerate. Finally, for the 110 axis, wehavex = y <{ 4,2 = 0.
The lowest levels are

=222 A=2(x—1)2 JA=E—12+224+1; A =2(x%2+41);
=(x+D124+224+1; g=2(x+1)%; A, =(x—2)2+ 22, (1.19%)
g = 2x2 4 4; Ay = (x + 2)2 + x2

The degeneracies are: 4,, 4,, and A4 are not degenerate; A,, 4,, 44, and
Ay are doubly degenerate; and A; and A; are fourfold degenerate. These
bands are illustrated in Fig. 3. These procedures may be extended to
any point in the zone, and may be applied to any lattice structure.
We shall see in Section 1.6 that the principal effect of including a
periodic potential in the energy band calculation is the removal of much
of the degeneracy present in the free electron limit. For instance, a
twofold degeneracy is the maximum permitted along any symmetry axis.
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The discussion of the free electron approximation will be continued after
we have considered the symmetry properties of electron wave functions
in more detail.

40
30F
20 rs
A2
1.of
0 Y F A\ N
T' wooaxs M r maxs " 110 AXIS

Fic. 3. Energy bands in the free electron limit. The dimensionless quantity
A = ma® E[2h% 1% is plotted as a function of wave vector for points along the 100,
110, and 111 axes in the Brillouin zone of the body-centered cubic lattice.

1.5 Space Groups

Most interesting crystals possess more symmetry than the translational
invariance discussed in Section 1.1. Other operations exist which carry
the crystal into itself. In the simplest cases these are rotations and reflec-
tions. The operators representing these symmetry transformations will
commuate with the crystal Hamiltonian and are important in classifying
the electron states. In this section, the symmetry operators will be
considered in a general way; in the next, the classification of the electron



12 CHAPTER 1. THE LANGUAGE OF BAND THEORY

states will be developed. For a more detailed analysis, the reader is
referred to the book by Jones (1960) and the review article by Ioster
(1957) which contains references to the original literature. An excellent
account of the basic principles of the group theory applied here has been
given by Wigner (1959).

The operations which carry a crystal into itself form a group of a
rather specialized nature called space group. We shall indicate the
essential notation and results briefly, after which the formal definitions

will be given.

An operator of a space group contains a part which is either a proper
or improper rotation, e, and a translation part, t, and is denoted by the
symbol {a|t}. This operator corresponds to the coordinate transformation

X =ax 4t (1.20)
[In (1.20), a will be represented by a 3 X 3 orthogonal matrix.] Two
such operators: {a|t} and {|t'} multiply in the following way:
(BIt'} {alt} — {BalBt + 1) (1.21)
The unit operator is represented by {€|0}. From (1.21) it may be verified
that the inverse of the operator {alt} is

{at}t = {a"Y— a1t} (1.22)
The pure translation operations, which in Section 1.1 were denoted as
T(R,) are now expressed as {e|R;}.
The operators {a|t} may be expressed in matrix form on the basis of
position vectors x. Denote each x as

1
X1
X2
X3
Then (1.20) becomes
1 1 0 0 0 1
"1: _| & % %z %3 *1 (1.23)
Xy ty Koy %op %23 X2
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)= 20

The multiplication equation (1.21) becomes

1 0Vl 0 1 0
(t' F‘l) (t a) - (t' + gt Ba) (1.21a)

and the inverse is
1 o\ 1 0
= .22
(t a) (— a1t a"1> (1.222)

In order to give a formal definition of a space group, it is necessary
to recall some of the basic definitions of group theory (Wigner, 1959):

(1) Conjugate elements. 1f X and A are members of a group, the element
B = XAX™1 is said to be conjugate to A. If two elements A4, C are
conjugate to a third element D, they are conjugate to each other.

(2) Class. Those elements of a group which are conjugate to each
other form a class. Stated in less abstract terminology, two transforma-
tions (operations) A, B are in the same class if it is possible to find a new
coordinate system in which transformation B has the same effect that
transformation 4 had in the previous system.

(3) Invariant subgroup. A subgroup that consists entirely of whole
classes is an invariant subgroup. If 4 is an element of the subgroup,
then every element B = XA4X~1is also a member of the subgroup when
X is any member of the full group.

A space group may now be defined as a group of operators of the
form {alt} which possesses an invariant subgroup of pure translations.
There are only a finite number of possible space groups in a space of
finite dimensions: 230 in three-dimensional space.

It is useful to consider the rotational parts of the operators alone.
These are of the type {e|0}. These operators form a group known as
the point group. It can be shown that the only operations which can
occur in a point group are proper rotations through integral multiples
of 60° and 90° about specified axes, and improper rotations consisting
of combinations of the proper rotations with the inversions. There are

or
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only 32 possible point groups in a three-dimensional space. It can also
be shown that if, for a given space group, we form the factor group? of
that space group with respect to the invariant subgroup of primitive
translations, this factor group is isomorphic with the point group composed
of the rotational parts of the operators of the space group.

Next consider the translation parts of the operators. Observe first that
if {€|R,,} is a translation operation, so is {€|aR,,} if {a|t} is any member
of the space group. This follows from the rule of multiplication and the
construction of the inverse, since

{€laRn} = {a|t} {€[Rn} {arft}? (1.24)

The translations parts of operators for which the rotational part is the
identity operation € are necessarily lattice translations R,. This is not
always true for other operations. However, it can be shown that all
operators belonging to a given space group which have a common rota-
tional part @ may be expressed as {a|v(a) + R,} where R, is a lattice
translation and v(a) is either zero or a translation which is not a lattice
translation ({¢|v(a)} does not belong to the space group). Certain space
groups, called “symmorphic”’ (or simple) have v(a) = O for all a. The
symmorphic space groups contain the entire point group as a subgroup.

Cubic structures (simple cubic, body-centered cubic, face-centered
cubic lattices) have the full cubic group as a point group. In several
cases, this point group is a subgroup of the space group; in other structures,
such as the diamond lattice, some operations of the space group involve
nonprimitive translations. We will now describe the cubic group in some
detail in order to have a specific example to which the analysis of the
next section may be applied.

The group consists of the 48 operations which leave a cube invariant.
These operations may be described as follows: (operations are grouped
according to classes):

I. The identity, E.
II. Rotation by 4 90° about a coordinate (fourfold) axis: Class
C, — six operations.

ITI. Rotations by 180° about the same axis: Class C,2 — three

operations.

3 See Wigner (1959, p. 68) for definition of the factor group.
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IV. Rotations by 7z about a twofold axis. There are six such axes:
Class C, — six operations.

V. Rotations by + 27/3 about a threefold axis (a body diagonal).
There are four such axes: Class C; — eight operations.

VI. The inversion with respect to the origin: Class J — one operation.

TABLE 1

THe CuBic GROUP

Class Operation Class Operation

E x y z J —x —y —z
—x —y z x y —z

C,? x —y —z JC,2 —x y z
—x y —z x —y z

—y x z Yy —x —z

y —x z —y x —z

c, x —z % G, —x z -y
x z =y —x —z y

z y —x —z =y x

—z ¥ x z -y —x

¥ x —z -y —x z

z =y x —z y —x

—x z xr —z —y

Cy —y —x —z JC, y x z
-z —y —x z y x

—x —z -y x z ¥

z x % —z —x =y

y z x -y —z —x

zZ —x —y —z x y

—y —z x y z —x

C, —z —x % JCs z x —y
—y z —x y —z x

—z X —y z  —x y

y —z —x —y z x




16 CHAPTER 1. THE LANGUAGE OF BAND THEORY

VII. Classes JC,, JC,% JC, JC,, which are combinations of the
listed operations with the inversion J: twenty-three operations.
Evidently there are forty-eight operations in all, divided into ten classes.
The operations of the cubic group may be conveniently described
in another manner. If we consider a position vector R with components
x, ¥, 2, the operations of the cubic group are then specified as the possible
rearrangements or permutations of x, y, z, including changes of sign.
The classifications are given in Table I.

The proper rotations which send a cube into itself form a subgroup
of the cubic group (E, C,2, C,, C,, C3). Also, the twenty-four operations in
classes E, C,2, JC,, JC,, and C, form a different subgroup: the tetrahedral
group. These are the operations which send a regular tetrahedron into
itself.

1.6 Irreducible Representations

The significance of the discussion of group theory results from a
general principle of quantum mechanics: The wave functions of a
quantum system must form bases for irreducible representations of the
group of operators which commute with the Hamiltonian of the system
(see Wigner, 1959, Chapter 11).

A group is said to be represented by a set of matrices B,, if to each
element in the group there corresponds a matrix such that products
correspond to products, etc.

A matrix M is said to be the direct sum of matrices my, m,, ... if
every element of M is zero except for square blocks (the submatrices
My, My, ...) along the diagonal. If each matrix of a representation can
be expressed as a direct sum in this way, and if the dimensions of the
corresponding submatrices are the same in every case, then the sub-
matrices themselves are a representation of the group, and the original

representation has been reduced. In order to carry out

my 0 L the reduction, it is necessary to find a unitary transfor-
0 |my O mation U which will bring the matrices to the required
0 ‘ 0 ‘mis form, M, = U-1 B, U (the same matrix U for all the B,).

In terms of the vectors of the space on which the B;
operate, the reduction separates out the subspaces which are carried
into themselves by all the B, (¢nvariant subspaces). If no transformation
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exists by means of which the matrices of a representation may each be
expressed as direct sums, then the representation is said to be izreducible.

The sum of the diagonal elements (trace) of a matrix representing
an operation of the group is called its character. The character is the same
for the matrices representing all the operations of the same class. The
dimension of a representation is the number of rows or columns of any
matrix, and is given by the character of the identity operation in that
representation.

There are two general theorems pertaining to the irreducible representa-
tions of a finite group which are important in our applications. These are
stated without proof:

(1) The number of irreducible representations equals the number of
classes.

(2) The sum of the squares of the dimensions of the representations
equals the number of elements of the group.

There are ten irreducible representations of the full cubic group:
Four are one-dimensional, two are two-dimensional, and four are three-
dimensional representations. [Observe that 4 x (1)24 2 X (2)2 + 4 X
(3)2 = 48.]

Before considering the representations of space groups, we consider
the subgroup of lattice translations. Since this is an Abelian group (the
operators commute with each other), all the irreducible representations
are one-dimensional. It will be recognized that Bloch’s theorem is a
consequence of the general statement at the beginning of this section.
It follows from (1.8) that the translation operators T(R;) = {€|R,} are
represented by (one-dimensional matrices) ¢’ ®i, where k lies inside or
on the surface of the Brillouin zone.

We now must consider the symmetries of the reciprocal lattice. If
a and a1 are operations in the point group of a lattice, then =1 R, is a
lattice translation if R, is, and a~'R,- K; = 22N, where N is some
integer, for all K;. Since a~! is an orthogonal transformation, it also
follows that

R, aK; = 22N (1.25)

An equation of the form of (1.25) must hold for all operations in the
point group. Then aK; must be a reciprocal lattice vector if K; is. This
means that if a lattice is invariant with respect to the operations of a
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given point group, the reciprocal lattice is also invariant under the same
point group. (But not space group: the translations may be different,
as we have already seen in two cases.) Now let {8|b} be an operator
belonging to the space group (of the direct lattice) which has the property
that

Bk =k + K, (1.26)

The operator {8 sends the vector K into itself or into an equivalent vector.
It can easily be verified that these operations form a group, which is
called the group of the wave vector. This group is a subgroup of the
space group of the lattice concerned; it also contains the entire subgroup
of lattice translations, and is therefore a space group. For a general point
of the Brillouin zone, the group of the wave vector contains only the
translations, since no operation of the point group except the identity
will leave the wave vector unaltered. For points on symmetry axes, for the
center, or for points on the surface of the zone, the group of the wave
vector will be larger.

Our detailed considerations of the representations of space groups
will be limited to the symmorphic groups. For a more detailed analysis,
the reader should consult the article by Koster (1957), previously cited.
We discuss the representations with respect to points in the zone. At
a general point, it is sufficient that the wave function have the Bloch
form (1.9) in order that it be an acceptable basis function for an irreducible
representation of the space group. An operator {a|t} acting on such a
function will send it into a function characterized by a different wave
vector. If there are »# operators in the point group, (# — 1) other functions
may be obtained in this way, which are characterized by wave vectors
ak. The figure of these k vectors is referred to as a “‘star.” It exhibits
all of the rotational and reflectional symmetry of the lattice. The Bloch
functions characterized by k vectors in the star are basis functions for
an n-dimensional irreducible representation of the space group. In this
representation, the matrices representing lattice translations are diagonal,
with elements ¢*"-® where k’ runs over all the vectors of the star.

When the point group of the wave vector contains operations in
addition to the identity, the irreducible representations of the space
group are not n-dimensional but rather of lower dimension. There will
be as many distinct irreducible representations of the space group G
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as there are irreducible representations of the point group of the wave
vector. If there are S such irreducible representations of dimension d;
(small representations), and there are g operations in the point group
of the wave vector, the S irreducible representations of G have dimension
D,, where

D, = —d; 1.27
. (1.27)

There are d, orthogonal functions ¢,/ (where § runs from 1 to d;) which
are multiplied by ¢* ®» under translation through R, (and thus belong
to the same representation of the translation subgroup) and which are
also the basis functions for an irreducible representation of the point
group of the wave vector. The representations of all point groups are
known, and have been listed by Koster (1957). If I'(8) is a representation
of the operation {$|0} in the point group of the wave vector, the representa-
tion of the operator {B[b} in the space group (x) of the wave vector k
is ¢®-*I'(). There will exist ¢ = n/g operators in the space group {a;a}
where ¢ =1 ... ¢, and {e,|a,} = {€]0}, such that the full space group
G may be expressed as the sum of its left cosets? with respect to «.

G =k + {ay|az}e + ... + {&g]a,}« (1.28)
The D, = gd, functions

Fhr = {oula} (1.29)

where I=1...q and f=1...d;, form bases for an irreducible
representation of the space group, G.

States which belong to the same irreducible representation of the
space group must have the same energy, since the wave functions can
be transformed into each other by the operators of the group. For a
general point in Kk-space, the vectors of the star are all different. States
characterized by wave vectors in the star will all belong to the same
representation of the space group but are located at different points of
the Brillouin zone. It follows that the energy will have the complete
symmetry of the reciprocal lattice. For points in the zone for which the

4 See Wigner (1959, p. 60) for a definition of ‘“‘coset.”
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group of the wave vector contains more than the lattice translations,
further analysis is required. There will then be only #/g = ¢ distinct
points in the zone where the corresponding states will have the same
energy. It is now necessary to classify states according to the irreducible
representation of the point group of the wave vector. If this point group
permits degeneracy, some energy bands will stick together at that point.

TABLE II

Group oF A4

Desig-

Class  Operation nation E o B Y S € ¢ 7

E x oy oz E E o B 1% 0 € 4 n
C? % —y —z o o E Y B 3 0 n ¢
x—z y p B y o E ¢ n € d
Cy
x z —y y y Yit E o n ¢ é €
x —y z 0 4 £ n ¢ E o Y B
JC?
¥ oy —z € £ 0 ¢ n o E B Y
x —z —y z I n 4] £ B Y E o
JCs

For the purpose of calculating wave functions in solids, and in order
to make calculations with them, it is useful to determine the irreducible
representations of the point groups of the wave vectors considered, and
in particular to find basis functions for a particular representation. If
degeneracy is permitted, it is also useful to determine an orthogonal set
of basis functions for the degenerate representation. We will illustrate
the determination of the representations by an example which is simple
enough to be analyzed in a very elementary fashion.

Consider the point group of the (100) axis, 4, in a cubic crystal.
This is the group of the square. Table II lists the operations and
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gives the multiplication table for the group. The entries in the
multiplication table are worked out in the following manner:

fo=(x, —z, —y(x, —y,2) = (x, —2,9) =8

The table is constructed so that the operator which designates a row
appears on the left in multiplication. The multiplication is not commu-
tative: for instance 6 = y while {6 = . According to the rules given
at the beginning of this section, there are five irreducible representations,
four of which are one-dimensional and the other two-dimensional. This
is all, since [4 X (1)2 4 1 X (2)2 = 8]. The one-dimensional representa-
tions have as bases functions which are carried into themselves (or their
negatives) by the operations of the group. The group operations are
here represented by numbers, either 4+ 1 or — 1. The two-dimensional
representation involves 2 X 2 square matrices and is based on a two-
dimensional vector space.

The simplest procedure in the construction of basis functions for the
representations is to consider elements of the form #" y™z' and their
linear combinations. In this example, a possible set of basis functions
can be chosen very simply; there are, however, an infinite number of
basis functions of this type for each representation:

1. There is a symmetric representation, denoted A4,, according to
which each operation is represented by the number + 1. (Throughout this
book, representations are designated according to the fundamental paper
of Bouckaert et al , 1936, in which a more complete discussion of representa-
tion theory may be found. The notation is designed to facilitate
understanding of the connections between bands that occur at points
of symmetry.) Acceptable basis functions for this representation are
1, x, 222 — y2 — 22, etc.

2. In the representation 4,, the operators E, «, d, and ¢ are represented
by + 1; the operators 8, y, {, and % are represented by — 1. A basis
function for this representation is 2 — 22. The reader can easily verify
that this assignment is consistent with the multiplication table.

3. In the representation 4,’, the operators E, «, {, and # are represented
by + 1; the operators 8, y, 4, and ¢ are represented by — 1. A basis
function for this representation is yz.
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4. In the representation A,’, the operators E, a, 8, and y are represented
by + 1; the operators 4, ¢, {, and by — 1. A basis function for this
representation is yz(y? — z2%).

5. For the two-dimensional representation A4, the following assignment
of matrices to operations may be made:

1 0\ (=1 o\ . fo —1\ (o 1}
(o D =3 ) a0 ) ()

(1.30)

The functions ¥y, z are suitable basis functions, as are also the functions
xy, x2.

The essential properties of a representation can be presented in the
character table. From the theorem of the invariance of the trace of a
matrix under unitary transformations it follows that the character is
independent of the basis functions employed and depends only on the
representation and the class. In Table III, the character table for the
group of A4 is presented.

TABLE III

CHARACTER TaBLE: Group oF 4

Rgtrif:n Basis E C,? c, jceE  Jc,
4, 1, %, 222 — y2 — 22 1 1 1 1 1
A4, y2 — 22 1 1 -1 1 —1
a4, vz 1 1 -1 —1 1
a4, yz(y? — 22) 1 1 1 —1 —1
A, Y, 2, XY, X2 2 —2 0 0 0

The cubic group whose operations were listed in Table I is the point
group of the wave vector at the zone center and the corner R in the
simple cubic lattice, at the zone center and the corner H for the body-
centered cubic lattice, and the zone center in the face-centered cubic
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structure. There are ten irreducible representations: four one-dimensional,
two two-dimensional, and four three-dimensional ones. When we add
the squares of the dimensions we find: 4x (1)2 4 2x (2)2 + 4% (3)2 = 48
as required. Many of the representations are of no importance in the
level structures of real materials since they have very high energies.
The character table for this group is presented in Table IV which also
contains a listing of polynomial basis functions according to Bouckaert
et al. (1936) and Von der Lage and Bethe (1947). In the case of a representa-
tion of dimension greater than one, only one basis function is given in most
cases; others may be determined by interchange of x, y, and z.

The determination of basis functions makes possible an approximate

TABLE IV

CHARACTER TABLE FOR THE CuBIC GROUP

Repre- )
sentation Basis E G2 C, Cs J JCZ JCy JCy JCy
r, 1 1 1 1 1 1 1 1 1 1 1
74(y? — 2%)
Iy, +y%%—2%+ 1 1 -1 —1 1 1 1 —1 —1 1
24(x2 — y2)
x2 — y2’
LAV S 2 2 0 0 —-1 2 2 0 0 —1
Iy x9,z 3 —1 1 -1 0 -3 1 —1 1 0
Iy z2(x2— 9% 3 —1 —1 1 0 -3 1 1 -1 0

xyz[x4(y? — 2%)
ry +y4s—#? 1 1 1 1 1 -1 -1 —-1 —1 —1
+ 24(x? - 3?)]

Iy xyz 1 1 -1 -1 1 -1 -1 1 1 —1
Iy xyz(x? — 92 2 2 0 0 -1 —2 -2 0 0 1
Ty xy(x®— y?) 3 -1 1 -1 0 3 —1 1 —1 0

Iy’ xy,yz,2x 3 —1 -1 1 0 3 -1 —1 1 0
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correspondence with atomic central field wave functions which are
conventionally designated s, ¢, 4, f.... This can be accomplished if
one observes that a term %™ y"z” is proportional to #”™"*? times a
linear combination of spherical harmonics whose total angular momentum
quantum number, / =m + n + p. The correspondence is useful in
considering the states likely to be occupied by electrons deriving from
atomic levels of a given symmetry. The correspondence is, for states at
the center of the zone, Iy —s; Iy —p; Iy Iy’ —d Iy, Iy,
Iy —f, ... . This correspondence is only approximate in that if a
solid-state wave function, belonging to I, for instance, is expanded in
spherical harmonics, terms involving / = 4 and / = 6, etc., may be present
in addition to those of / =2; and is useful only at points of high
symmetry where functions of small ! belong to different representations.
At a general point of the zone, all spherical harmonics may be present
in the expansion of any wave function. In Tables V-XII, the character
tables are presented for the points of high symmetry in the Brillouin
zones of the body-centered cubic and face-centered cubic lattices shown
in Figs. 1 and 2.

Wave functions are eigenfunctions of definite parity only when the
group of the wave vector contains the inversion. When it does not, basis
functions of even and odd parity occur together, as in the case of the
group of P.

The group of P is the tetrahedral group previously described. There
are only five irreducible representations: half the number found for
the cubic group. It is interesting to see the way in which the representa-
tions at I" combine to give those at P: P, contains functions belonging
to I} and Iy'; P, contains those belonging to I'; and I}’; P, contains
I, and I3y, Py, Iy and Iyy'; P, [y and 155,

Basis functions for N have been chosen which are appropriate to the
point (27/a)(3, 4, 0). The operation C,|| is a rotation about an axis parallel
to the wave vector, while C, | is a rotation about an axis perpendicular
to the wave vector. These operations are not equivalent. The representa-
tions are all nondegenerate. The representation IV, is of particular interest
since it contains, in addition to an s-like function, two different d-like
functions.

The points on the surface of the Brillouin zone of the face-centered
cubic lattice do not have as high symmetry as to the corresponding points
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TABLE V

CHARACTER TABLE, GRouP OF P = (27m/a) (3, §, })

25

Repre- ) 5 P c 67C 61C
sentation Basis 3C, 8C, JCy JC,
P, 1,xyz 1 1 1 1 1

#(y? = 22)
p, T+ oya(et — 2% + 242 — y?) 1 1 1 —1 —1
P, 2% — y? xyz(x? — y?) 2 2 —1 0 0
Py x,y,z,%y, 92, 2% 3 —1 0 —1 1
P,  z(x? — y? 3 -1 0 1 -1
TABLE VI
CHARACTER TABLE, GRoUP OF N = (2n/a) (4, }, 0)
Repre- ) i . .
sentation Basis E Gy Gl G L J JCE JC 1 Cz“
N, 1, xy, 322 — #2 1 1 1 1 1 1 1 1
N, z2(x — ) 1 —1 1 -1 1 —1 —1 1
N, z2(x + ) 1 -1 -1 1 1 -1 1 -1
N, %% — y? 1 1 -1 -1 1 1 -1 -1
N/ x+y 1 -1 1 —1 -1 1 1 —1
Ny 2(#% — ¥?) 1 1 1 1 -1 -1 -1 -1
Ny 2 1 1 -1 -1 -1 -1 1 1
N/ x -y 1 —1 —1 1 —1 1 —1 1
TABLE VII
CHARACTER TABLE, .GrRoOUP OF A, F%
Repre- )
sentation Basis E 2C, 3/C,
a4, Lx+y+=z 1 1 1
Ay x2(y? — 2%) 4+ (2% — 22) + z(x2 — y?) 1 1 —1
Ag 2x —y—2z,y —z 2 —1 0

CF=2nala)}+xt—xt—2x); 0<<x<<}
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pertaining to the body-centered cubic lattice. There are three inequivalent
points X (instead of the single H) so that the point group of X contains
sixteen operations. It is necessary to distinguish rotations about axes
parallel and perpendicular to the wave vector. Notice that the representa-
tion X; contains a 4 function as well as an s function. There are four
inequivalent points L compared to two inequivalent points P. In addition
to the basis functions listed for the doubly degenerate representation
L,, there are two additional linear combinations of spherical harmonics
with / = 2 which belong to Lg; thus all the d-like functions are contained
in L, and L;. There are six inequivalent points W. Since the group of
W does not contain the inversion, the representations may contain both
even and odd basis functions. For instance, the representation W, contains
both p- and d-like functions.

TABLE IX

CHARACTER TaBLE, GRouP OoF L = (2n/a) (4, %, 3)

Repre- .
sentation Basis E 26, 3C, ] 2JC33]C
L, 1, xy + yz + x2 1 1 1 1 1 1
L, yz(y? — 2% + xy(x? — ) + xz(z2 - 2% 1 1 —1 1 1 -1
Ly 2#% — 92— 2% y2— 22 2 -1 0 2 —1 0
Ly x(y?— 2% + (2 — %) + 2(#® — »?) 1 1 1 —1 —1 —1
Ly x+y+z 1 1 -1 —1 —1 1
Ly y—2z 22—y—z 2 -1 0 —2 1 0

TABLE X
CHARACTER TABLE, GrouP oF W, = (2z/a) (1, 4, 0)

Repre- Basi E cp 2C 2JC,  2JCg
sentation asis 4 2 JCs JC4

W, 1, 292 — x2 — 22 1 1 1 1 1

W, xz 1 1 1 -1 -1

w, xyz 1 1 —1 1 -1

Wy’ y, 22 — %2 1 1 —1 —1 1

Wy XY, V2, %, 2 2 -2 0 0 0
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TABLE XI

CHARACTER TABLE, GRoUP OF X = (2m/a) (%, %, 0)

Repre- . .
sentation Basis E o JCy JCs
2 1, + vy 1 1 1 1
z, z2(x — y); z(x%— y?%) 1 1 -1 -1
2y z; 2(x 4+ y) 1 —1 —1 1
pIA x —y; x%— y2 1 —1 1 —1
TABLE XII
CHARACTER TaABLES oF G, K, U,D,Z, S
A E C,? JC4? JC2 |
Repre- .
sentation G K US E Cy JCs JC,
D E Cs JC, JC: L
K, L,x+y 1 1 1 1
K, z2(x — ), z(x? — yp?) 1 1 -1 -1
K, z, z(x + ) 1 —1 —1 1
K, x—y;, x*—y? 1 -1 1 —1
2n 2n 3 3
G = - 3+ 2% 34— %0 (bee); = " (240 (fee)
2n 2n
U=—(L+ D (fee); D=— (1% (bce)
a a
2n 2n
Z=—(1,%0) (fce); S=—(,x%%) (fcc)
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1.7 The Effective Mass

We now wish to study in a general way the behavior of the energy as
a function of wave vector inside the Brillouin zone. We have already
observed that the energy has the full symmetry of the reciprocal lattice.
In addition, the invariance of the Hamiltonian under time reversal
(which changes k into — k) requires that E(k) = E(— k) regardless of
crystallographic symmetry. (Time reversal symmetry will be discussed
in detail in Section 1.11.) Our principal concern here is with the perrbuta-
tion theory which enables the determination of the energy as a function
of k for values of k in the neighborhood of some k; for which the energy
levels are assumed to be known. The perturbation procedure can be
developed in the following way:

Let 4, (k, ) be the wave function for a state in the nth band at position
k in the Brillouin zone, and let ;(k,, r) similarly pertain to the jth band
at k,. For the present, all states will be assumed to be nondegenerate.
The functions

2i(K, 1) = e R T (K, 1) = ¥y (Ko, T) (1.31)
(where we have set k = k, + 8) are satisfactory basis functions for the
expansion of the wave function for a state of wave vector k. This may
easily be seen by writing ;(K,, r) in the Bloch form: elk“'ruj(ko, r). It
is shown in Section 4.1 that the y;(k, r) are a complete, orthonormal set
if the ¢, (k, r) are.

. 7
1) =2 ARyl r) = e F X Ayiilhor)  (132)
i 7
The i;(ky, r) are solutions of the Schrédinger equation for an energy
E.(kg). This expansion is substituted into the Schrédinger equation for

J,(k, r). We write the Hamiltonian as the sum of the kinetic energy
operator and a periodic potential:

p2 __ piS.T . p2 k . h? 2 .
(%4‘1/)1[1"(1(,1‘)—6 ZAm(%‘f‘ %S P+%S + V| ik, 1)
h
— gis-r ZA"7|: +_52 +77$p:| 1/;j(k0, I') (133)
0

k) e T D7 A, ik, 1),
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Since the i,(ky, r) form an orthonormal set, we multiply (1-33) by
exp (— is- l‘)z/l;'f (kg 1) and integrate over the entire crystal. The momen-
tum matrix element p;;, is defined by

Piir = E i (kOrr(h )‘/’1 (kg 1) d3r. (1.34)

entire
crystal

Then (1-33) reduces to:

h2g2

h
Eji(ky) + A+ —5 D P dnjr = EJ(K) 4, (1.35)
2my My »
7

An equation of the form (1.35) is obtained for each value of j. Evidently
we have an infinite set of simultaneous linear equations for the coefficients
A,;. The condition that these equations have a nontrivial solution is that
the determinant whose general element is of the form

Hjjr — E(K) ;0 (1.36)
with
h2s?
Hjjr = (Ej(Kg) + —— om 677 + S | U7 (1.37)

must vanish. This is, of course, equivalent to the problem of diagonalizing
the matrix representing the Hamiltonian on the basis of the y;(k,r)
whose elements have the form given in (1.37). The off-diagonal matrix
elements contain s, and may be treated as perturbations when s is small.
Under the assumption that the band of interest is not degenerate at kg,
ordinary second order perturbation theory is applicable:

h hz 2 ? " Pnj)\S " Pjn
Eul) = Exllo) + 58 Dot o + g 3 by

i(i+#n)
(1.38)
The perturbation theory has given a Taylor series expansion of the

energy as a function of k. The convergence of the series is governed
by the energy denominators which appear in (1.38). If these are small,
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the second order term in the energy will be large, and higher terms in
the series will be also important. Under these circumstances, it is desirable
to diagonalize the portion of the effective Hamiltonian (1.37) which
connects the nearly degenerate states.

Let us consider first a situation in which band »# has an extremum
at ky, so that term linear in 8 in (1.38) vanishes. Let s, and s; be rectangular
components of s with respect to some fixed axes, and p7, etc., be
corresponding components of the matrix element. We may differentiate
Eq. (1.38) twice and obtain

my PE, _ my 9°E, (Pri Bin -+ Pri B
0 O 1.39
B2 9s,0s; K2 ok, okg 5 g Z E.(ky) — Ej(ky) (1.99)
It is convenient to define a rec1procal effective mass tensor through
my, m, 92E
- =20 1.40
(m*)aﬂ h2 aka 6k/; ( )

Then we may write in (1.39)

a B B
My 1 (Brs Bin + Pwi D)
— | = 0w+ — 1.41a
(WL Ty A -
The result (1.41a) is the sum rule for the effective mass (sometimes
referred to as the “f”” sum rule). The diagonal elements of (1.41a)simplify to

m, ‘Ibm‘z
(m—?") 14— 2‘ O (1.41b)

The interaction of a given level w1th lower lying levels, or core states
(E; < E,) tends to decrease the effective mass, while the interaction with
higher states tends to increase it.

The first term in (1.38) gives rise to a linear dependence of energy on
wave vector going away from k,. This term vanishes, however, for certain
states at symmetry points of the Brillouin zone. In that case, the energy
is quadratic in s near kg, as has been discussed. Symmetry considerations
can usually be employed to determine whether the linear term vanishes.
Consider a general matrix element of the form

5¢”“wﬂ0wmmnd%



32 CHAPTER 1. THE LANGUAGE OF BAND THEORY

where 0 is any operator. In order that this integral not be zero, it is
necessary that the integrand contain a scalar component. The functions
Ji(Ko, 1), (Ko, r) and the operator O must transform according to definite
irreducible representations of the point group of ko, say I'(:), I'(j), T'(0).
The integrand then transforms according to the direct product
') x T(0) x T().

The concept of direct product is best introduced with reference to
some matrix representation. The direct product of an #n X # matrix
whose elements are a; and an m X m matrix whose elements are b, is
an mn X mn matrix with elements a,; b,, where now ¢ and % designate
the row, and j and / the column. The representation of the group formed
by constructing the direct products of the matrices of two irreducible
representations will generally be reducible. In the present case, if the
representation of I'(s) x I'(0) x I'() contains I'(!), where I'(}) is the
symmetric representation of the point group of k;, the matrix element
need not'vanish. In Eq. (1.34), the presence of the operator I indicates
that we require I'(0) = I'(v), where I'(v) is the representation of a vector.

At a general point in the zone, all the representations are the same,
and the linear dependence will usually exist. At symmetry points where
there are a number of representations the linear dependence will often
vanish. In particular, if the group of k; contains the inversion, the wave
functions will be eigenfunctions of definite parity, and the product
Y* Vi will be an odd function whether i is odd or even, and the integral
must vanish. For instance, V, E = 0 for all representations at I', H,
and N in the body-centered cubic lattice. One expects to find maxima
and minima of bands only at points of symmetry or along a symmetry
axis where the components of the gradient perpendicular to that axis
must vanish.

If the original state at k, is degenerate, the perturbation will remove
the degeneracy, at least in some directions. This means that in going
from a point of high symmetry to a point of lower symmetry, the energy
bands are split. It is then necessary to use degenerate perturbation
theory. If the momentum operator has matrix elements connecting the
members of the degenerate set, the degeneracy will be removed in first
order, and the split bands will go away from the symmetry point with
a nonzero slope. From the previous argument, it follows that this can
only occur in the vicinity of symmetry points for which the point group
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does not contain the inversion. In the most interesting cases (Shockley,
1950), however, the momentum operator has nonvanishing matrix
elements only between the degenerate subset and states of different
energy. The degeneracy is then removed in second order, and the perturba-
tion theory appropriate for this case must be employed.

In this case, the energy is obtained by diagonalizing a rather different
type of matrix. Suppose for simplicity that at k, we have a doubly
degenerate pair of states designated, with reference to Egs. (1.35), by
indices # = 0, 1 [energy Eqy(ky)]. The coefficients 4,, A, will be the only
ones which are of order zero in 8. (Only one index need be retained on
the quantities 4.} We may then solve Eq. (1.35) for 4,( # 0, 1) in
terms of 4, and A,, retaining terms of first order in s, only,

A1 h . piOAO p11 Al :| (1'42)

iy my S | Eolkg) — Exky) T Eolky) — (ko)

We use the result (1.42) to eliminate the 4,(j # 0, 1) from those of Eqs.
(1.35) which determine A, and 4,. Two equations for A, and A4, are
obtained, the first of which is

K2sz K2 (8 * Pos) (8 * Pjo)
.EO(RO) —E+ 2m,, t o .ZEo(ko) —Ei(ko)] 4o (149

A2 (8- Poj) (8- Pi1) _
gt [,. = ) - g =0

A similar equation is, of course, obtained in which the indices 0 and 1
are interchanged. The energy E is found as the solution of a (2 x 2)
determinantal equation

det |[Hym — Edj| = 0 (1.44)

The problem is equivalent to that of finding the eigenvalues of an effective
Hamiltonian, H, whose general element is

h?s? h? (8- P) (8 * Pjn)
Hy, = Eqlk +—)an+— ) By (140
: ( olko) Mo ; mozj;%'Eo(ko) — Ej(ky) ( )
In the present case/, # = 0, 1; but in the case of a larger degenerate set

at ky, Egs. (1.44) and (1.45) still apply except for the obvious modifications
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that the order of the determinantal equation is equal to the degree of
degeneracy of the set, and the sum in (1.45) excludes all members of
the set. Finally, note that if the diagonal momentum matrix elements
are not zero, a term (%/my)s - p, d,, is to be added to (1.45).

The matrix elements H,, of the effective Hamiltonian are quadratic
in 8. When the determinantal equation is solved, only the quadratic
dependence of E on 8 is to be retained, since the perturbation theory has
carried only to second order. The dependence of E on s will, however,
be more complicated than that resulting from (1.38). The energy surfaces
in the neighborhood of a degeneracy may be severely warped.

The functional dependence of the sum in (1.45) on the components
of s can usually be determined from symmetry considerations. Conse-
quently we can often set up the equation analogous to (1.44) except for
some unknown constants when the matrix elements are unknown, and
so determine the general form of the energy surfaces. Kane (1956a, b) has
applied this procedure, suitably modified to include spin orbit coupling,
in a semiempirical analysis of the degenerate valence bands near k = 0
in germanium, silicon, and indium antimonide. A determination of the
form of the energy surfaces near this point of degeneracy is important in
the analysis of several experiments.

For some purposes, particularly in the theory of tunneling, it is
important to determine the properties of the energy as a function of
a complex wave vector k. The mathematical analysis is based on a
study of perturbation problem we have already discussed. The problem
has been treated by Blount (1962a), some of whose results will be quoted
here. First, consider a band which is not degenerate at a (real) point k.
The energy is an analytic function of complex k in a region about k,.
Then the energy may be determined as a function of k from the Taylor
expansion (1.38), which is convergent in this region. The region of
analyticity is terminated by surfaces of branch points which must exist
when the imaginary components of k are large. In the case of a group of
bands which are degenerate at k;, the behavior of the energy in complex
k space is much more complicated. It suffices here to state that E(k)
will not usually be analytic, but that k; will be a branch point. This
follows from consideration of the secular equation (1.44). A detailed
discussion has been given by Blount.
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Let us now summarize the general consequences of these considerations
with reference to our discussion of group theory. In the first place, the
energy is a continuous and differentiable function of (real) k throughout
the Brillouin zone. If energy levels and wave functions have been
determined at a point ky, the energies of states at k, + s, where s is small,
may be determined by considering the effect of the perturbation (%/m,)s - p.
Symmetry considerations are not particularly helpful if k, is a general
point of the zone. If k, is a symmetry point, and k, + & is a general point,
all the degeneracy which may be present at k, is removed. If the point
group of kK, + s is a subgroup of the group of k;, but still contains more
than the identity, as occurs on going away from k = 0 along a symmetry
axis, the wave functions at k, 4+ s transform according to the subgroup.
If the appropriate representation of the group of k, is reducible as a
representation of the subgroup at k, + s, the degeneracy at k; will be
removed at least in part. Of course, if the groups at k, and k, 4 s are
the same, the degeneracy will also be the same.

Information concerning the connection of bands and the splitting
of degeneracies can be obtained by determining how the representations
of the point group of k, are expressed in terms of direct sums of the
representations at k; 4+ s. These results are summarized in compatibility
tables. The nature of this procedure may be appreciated from the following
simple argument, which relates the representations at I to those along
the 100 axis, 4, in a cubic lattice. We see from inspection of the basis
functions previously given for the representations that a function which
has I} symmetry will go into one with 4; symmetry. Functions with
$, d, etc., character will be mixed with the original s-like function. Next
consider the triply degenerate state I';. We see from the basis functions
given in Table IV that those functions which transform as y or z will go
into the representation Aj; the one which transforms as x will go to 4,.
Thus the triply degenerate I'}; level will be split along this axis into the
doubly degenerate A; and the nondegenerate A,. Similarly, the triply
degenerate I'yy' splits into 4," and 4;, while the doubly degenerate I7,
splits into A4, and 4,, as may again be seen by comparing basis functions.
We can also see that the subscript notation for the states gives the
appropriate compatibility relations. Unfortunately the compatibility
results cannot always be stated so concisely when other axes are considered.
The most important compatibility relations are summarized in Tables
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XIII and XIV below. Other sets of relations, i.e., between P and A4,
and N and X may be immediately deduced from the character tables.

A fundamental question arises in considering the connection of bands
concerning the circumstances under which bands may cross. This problem
has been analyzed carefully by Herring (1937b). Two important cases
must be considered.

TABLE XIII

COMPATIBILITY RELATIONS BETWEEN [" anD 4,4, 2

Iy r, TAN Iy; Ty ry Iy Iy Iy Ty
A, A, Ay, A Ay Ay Ay Ay Ay A Ay A Ay A, A
A, A, Ay 4,4, A, 44 A, 4, Ag Ay Ay Ay Ay
2 P 22 22z X 2x PN 2y X, X, XX, XX, X%,
TABLE XIV
COMPATIBILITY RELATIONS BETWEEN X AND A,Z, S

X, X, X, X, X, X X, Xy X, Xy
a4, Vil a4, a4, A4, a4, Ay A, a4, A
Z, Z, Z, Z, Z3Z, Zy Z, Zy Zy Z,2Z,
S, S, S, S, S, S, S, S, S, S, 5, S,

I. It is possible for energy bands belonging to different representations
to cross. Such a crossing, for instance on a symmetry axis, produces an
accidental degeneracy at the point of contact. This term is applied in
order to distinguish these contacts of energy levels from those required
by symmetry considerations.

It is necessary to apply the degenerate perturbation procedure
previously discussed in order to determine the dependence of the energy
on 8 =k — k, (k, is the point of contact) in the neighborhood of the
contact. In the usual cases, the degeneracy is removed in first order
(except possibly in special directions) in s on going away from the point
of contact.
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II. It is unlikely there will be accidental degeneracies between bands
of the same symmetry. By this we mean that (except for certain rather
specialized possibilities discussed in detail by Herring) if such contact
occurs for some specific crystal potential, it will be removed by almost
any small change in the potential. Since all states at general points on
the Brillouin zone have the same symmetry, it follows that isolated
accidental degeneracies of bands at general points of the zone for crystals
with a center of inversion are vanishingly improbable.

1.8 The Density of States

A quantity of fundamental interest in band theory is the number of
electron states in an interval of energy. This is specified by the density
of states function G(E) which we define as follows: G(E) dE is the number
of states pér volume £ of the crystal (for each direction of the electron
spin separately) with energies between E and E + dE. From elementary
considerations, it follows that

G(E) = Q 4 Sd% (1.46)

(2n)3 dE

The integral is to be taken over the volume of k-space bounded by a
surface of constant energy E. Let dS be an element of area on the energy
surface. The perpendicular distance between two surfaces characterized
by energies E and E + dE is dE[|V E|. The volume of the region of
k-space between energy surfaces is [ (dS/|Vy E|)dE. Thus

G(E) =

2 E a5 (1.47)

@ ) B
The integral in (1.47) goes over the surface of constant energy, E.

Equation (1.47) may be evaluated immediately for free electrons
for which E = K2 k?/2m so that the energy surfaces are spherical. We
have

A2 2E\'?
|l7kE|=—k=7i< )
m

m
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Then (for unit volume)

m

GE) = 272 B3

(2mE 12 (1.48)
According to the principles of Fermi statistics, the Fermi energy, E, at
the absolute zero of temperature is determined by the condition that

Eg

2SG(E) dE =n (1.49)

in which » is the number of electrons per unit volume and the factor of
2 on the left takes account of the two possible orieatations of electron spin.
We find that

h2
Ep = 5 (3n2n)® (1.50)

The average energy per electron, &, is given by

Ep

&= %EG(E)E dE (1.51)

0

In the case of free electrons we find, from (1.48) and (1.50), after some
manipulation, that

&= gEF (1.52)

It would be very difficult to evaluate (1.47) directly to determine the
density of states in most actual problems in band theory. Some general
conclusions as to the nature of the density of states function may be
drawn, however, from very general arguments based on this equation.

It is evident from (1.47) that G(EF) may have some sort of singularity
if the integration includes a point at which |, E| = 0. Such points are
called critical points. We have seen in the previous sections that the
symmetry of the crystal may require that |V, E| vanish at certain points.
Hence, some critical points will be required to exist by symmetry reasons.
In fact, there are several kinds of critical points.
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Let us consider the expansion of the energy in powers of 8 = k — k,
as given by (1.36) for a case in which the linear term in the equation
vanishes. The energy is evidently a quadratic form in the components
of 8; we may without loss of generality imagine we have chosen our
coordinate system to coincide with the principal axes of this form, so
that we have

E(k) = E(ky) + O, s (1.53)

1=1

A point k,, where such an expansion is possible, is called an “‘analytic
critical point.” There are four possible types of analytic critical points,
(designated P, according to the values of the coefficients a). These are
enumerated as follows:

Py: ay, o, o all negative (maximum)

P, a;, o, negative, ag positive (saddle point)

P,: a;, negative, o, oz positive (saddle point)

Py oy, oy, o5 all positive (minimum)

There are fundamental considerations of a topological nature which
relate the number of critical points of the several kinds. These relations,
first obtained by Morse (1938), were applied to the frequency distribution
function for lattice vibrations by Van Hove (1953) and by J. C. Phillips
(1956). The energy may be considered to be a multiply periodic function
of wave vector in the reciprocal lattice. For the purposes of illustrating
the argument in a simple manner, let us consider (Montroll, 1954) a
two-dimensional square reciprocal lattice, which is shown in Fig. 4.
Suppose that a simple energy band exists in this system, which has a
maximum and a minimum of energy for the points in the cell shown in
the diagram. Let us imagine a set of curves connecting the minima in
adjacent cells as shown. On each curve there is a point at which the
energy is a relative maximum. The locus of such relative maxima may
be obtained : we suppose it is the solid curve passing through the maxima.
On this curve, there is a lowest relative maximum: this point is a saddle
point. Similarily, on drawing curves connecting the absolute maxima
in two cells, one obtains a locus of relative minima, and thereby finds
another saddle point which is the highest relative minimum.
Evidently two saddle points must exist. (Actually, if the absolute
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maximum occurred at a point of low symmetry as shown in the diagram,

it would have to be repeated at seven other points inside the cell.)
The fundamental result of the previous discussion is that the numbers

of the critical points of the various type are not independent if the E(k)

A A A
0] 0] 0]
A MAX A A
S aL”
MIN ~Z
SADDLE
POINT
A A
© 0] 0]

Fic. 4. Critical points in a square lattice.

function is multiply periodic. Let N; be the number of critical points of
type P, (we are still considering only analytic critical points): the relations
which must hold between the N; are (for a three-dimensional situation)
according to Morse:

Ny>1

N, —Ny=2

(1.54)
Ny—N;+Ny>=1

Ny— Ny+ N, — Ny=0
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The minimum set of critical points in a given band is thus one
maximum, one minimum, and three saddle points of each kind (P, and P,).5

We will now study the behavior of the density of states near a critical
point following the treatment of Wannier (1959). It is convenient to
define new variables 7, = |o,['*s; in (1.53) so that

3
E(k) —E(k) = > eir?  with &= +1 (1.55)

i=1

The behavior in the vicinity of a minimum or maximum of energy can
then be found as was done for the case of free electrons in (1.48). The
density of states is the proportional to (E — E,)'* near the bottom of
the band or to (E, — E)"* near the top (where E, is the energy of the
minimum or maximum, respectively). The saddle points have to be
handled with greater care. These introduce discontinuities in the derivative
of the density of states with respect to energy. In order to have a concrete
example, let us assume

E(K) — E(kg) = 7,2 + 7,2 — 7,2 (1.56)

When E(k) > E(k,), the surfaces of constant energy may be represented
as hyperboloids of one sheet; when E(k) = E(k,) the surface becomes
a cone passing through the saddle point; for E(k) < E(k,) the energy
surfaces are hyperboloids of two sheets. The area of the surfaces of
constant energy changes very rapidly when E(K) passes through E(k,);
this increase in area is responsible for the discontinuity of the derivative
of the density of states. To determine G(E), put

E(k) — E(k)| = a®

5 The simple expression
E=E0+E1(coskxa+coskya+cosk,a); E <0

which applies to a single s band in a simple cubic lattice in an extreme tight binding
approximation exhibits the minimum number of. critical points. The minimum
occurs at the zone center I, three saddle points of type P, occur at the face center X,
three saddle points of type P, occur at the middle of an edge M, and the maximum
occurs at the corner R.
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r, = a cosh { cos ¢
7o = a cosh { sin ¢ for E(k) > E(ky) (1.57a)
73 =asinh {
7

= asinh { cos ¢

7, = asinh ¢ sin ¢ for E(k) < E(k,) (1.57b)

-

rg =acosh{

The surfaces of constant energy are then surfaces of constant 4. The
density of states is determined by expressing the volume element d3% in
the coordinates specified in (1.57) with the use of the Jacobian
determinant. The integrals must be limited to a finite region in the
vicinity of the saddle point. This may be done by requiring that

7,2 + 7,2 + 732 = a? (sinh? { + cosh? () = R? (1.58)

where R is some fixed number. Thus, for E(k) > E(kg), 0 << sinh { <
[} (R2a2 — 1)]"% and for E(k) < E(k,), 1 < cosh { < [}(R2a~2+1)]'2
Thus, for E(k) > E(k,),

G(E) o (R? — a?)!2 = |/R? 4 E(k,) — E(K) (1.59)
while, for E(k) < E(k,),

G(E) oc (R?+ a?)'2 — a = |/(R® + E(ky) — E(k) — | E(k;) — E(k)

The function |/R® + E (ko) — E(k) is continuous and has continuous
derivatives at the saddle point, so it is evident that G(E) has a discontinuity
in its first derivative. Similar considerations may easily be applied near
a P; point.

The energy surfaces may be much more complicated than allowed
by (1.53) in the vicinity of a point of degeneracy. We will not analyze these
cases in detail. Phillips has shown that an index ¢ and a topologial weight,
g, may be assigned to each such nonanalytic critical point so that the
relations (1.54) remain valid [¢q is the number of times the critical point
is to be counted in applying (1.54)]. These relations are used in the
following manner: one determines the critical points of each type required
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by the symmetry considerations of the previous section, and tests to see
if the relations (1.54) are satisfied. If they are, no further critical points
are required; if not, additional critical points must exist, and have to be
located. Once the critical points are located, the behavior of the density
of states as a function of energy can be determined in the neighborhood
of the point. The construction of the density of states is greatly simplified
with this information (see, for instance Callaway and Hughes, 1962).

1.9 The Fermi Surface in the Free Electron Approximation

At the absolute zero of temperature, the occupied states fill some
bounded region of k-space; all states whose energy is less than the Fermi
energy are full. The surface bounding the occupied region is called the
Fermi surface. It can be shown that the existence of a Fermi surface
across which the occupation number of the one-electron states is discontin-
uous is an (almost) exact result of the quantum theory of a many-fermion
system (Luttinger and Ward, 1960). This discussion applies to metals,
which are characterized by the existence of vacant states immediately
adjacent to occupied states. In insulators to which the one-electron
approximation may be applied, the energy bands are full. In such a
case there is no Fermi surface for there are no vacant states adjacent
in energy to the occupied states.

There are several experiments which measure characteristics of Fermi
surfaces in metals: for instance, its area. Consequently a fundamental
problem of band theory is to determine the Fermi surface for a given
metal. This problem is a difficult one, being beset with the combined
difficulties of an energy level calculation and the construction of the
density of states. Consequently, it is of especial interest that it is possible
to give at least a qualitative account of Fermi surfaces in many metals
in terms of the free electron approximation. It would seem on first
consideration that the free electron model would require the Fermi surface
to be spherical. This, however, is true only for monovalent materials.
When there is more than one electron per atom, the Brillouin zone
structure must be taken into account. If we imagine gradually adding
electrons to the “‘empty lattice,” the Fermi surface is at first a sphere
which expands until it is in contact with the zone boundary. This occurs
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at the face center N for the body-centered cubic lattice; at the point L
for the face-centered cubic. The Fermi surface is in a sense reflected
inward from the boundary: the first band continues to fill, while states
in the higher bands are occupied. It is convenient to consider the Fermi
surface to have portions in the higher bands. If there are enough electrons
to fill states at a point where a band degeneracy occurs, states in several

X

X

7N\ 7\

N N

Fic. 5. Construction of the Fermi surface in the free electron approximation.
The k, k, plane in the reciprocal lattice of a body-centered cubic crystal is considered.
The circles are drawn for a radius corresponding to three electrons per atom. The
singly shaded area in the central zone represents a region in which states in the
first band only are occupied; the doubly shaded area represents occupation of both
first and second bands, and the unshaded area represents an unoccupied region.

bands may begin to fill at the same time. Since the free electron approx-
imation yields simple algebraic expressions for the energy (Section 1.4)
it is possible, using the principles discussed here, to make explicit construc-
tions of the Fermi surface. This has been done by Harrison (Harrison,
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1960b) for the body-centered cubic, face-centered cubic, and hexagonal
close-packed structures.

Fi1c. 6. Fermi surfaces in the free electron approximation. The Fermi surface

in the free electron approximation is shown for a face-centered cubic crystal with

three electrons per atom. The first band is full. The upper drawing shows the

portion of the Fermi surface in the second band; the lower shows the portion in

the third band, following Harrison (1960b). There are also small pockets of occupied

states around the corners, W, in the fourth band. Note that the lower drawing is
centered on X.

The actual construction of the surfaces is facilitated in an extended
zone scheme. We can draw about each reciprocal lattice point a sphere
whose volume corresponds to the appropriate number of electrons
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considered. These spheres will intersect when the number of electrons
is sufficiently large. These intersections can occur only on the surfaces
of a Brillouin zone. The constant energy surface belonging to a particular
band changes spheres at such an intersection.

Consider a point k, lying within the central Brillouin zone. If it is
contained within a single sphere, a free electron state at that point in the
first band is occupied. If it lies within two spheres, states belonging to
the first and second bands are occupied, and so on. If it does not lie
within a sphere, the state is unoccupied. As an illustration, Fig. 5 shows
the construction for the %, £, plane in the reciprocal lattice for the body-
centered cubic structure for the case of three electrons per atom. Small
regions around the corner H are unoccupied, and in the second band,
regions around the face centers are occupied. In Fig. 6, some of the
Fermi surfaces constructed by Harrison are shown.

1.10 Spin Orbit Coupling

In this section, the role of spin orbit coupling in band theory is
considered. Spin orbit coupling is a feature appearing in an approximate
form of the Dirac equation which results from elimination of the small
components of the wave function (see L. I. Schiff, 1955, p. 332). We
begin by considering the Dirac equation for one particle in a periodic
potential V(r):

[—co-p— Bmc? + Vg = Ex i (1.60)

The argument of Section 1.1 establishing Bloch’s theorem is still valid
since it depends only on the translation invariance of the Hamiltonian.
Hence, we can write

‘//k = e“‘"uk(r) (161)

where %, is a four-component spinor. The general procedure of Section 1.7
concerning the calculation of effective masses is still valid. One must
replace Eq. (1.35) by

Ej(ko)Awi — hics - D) atjjr Ajr = En(K) Ay (1.62)
7‘!
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where

Qjjr = S Ji* (Ko, ) aly’ (K, T) @3 (1.63)

and the integration includes summation over spinor indices.

The energy bands which are derived from the Dirac equation (1.60)
differ most strikingly from those calculated in the nonrelativistic theory
in that some degeneracies present in the latter case are removed. This
results because the transformation properties of a spinor (either four-
component or two-component) are quite different from those of a scalar
wave function. The splitting of degeneracies is given correctly in a
qualitative sense when one considers the approximate ‘“Pauli”’ equation
which contains the spin orbit coupling term. Most analysis has been
based on this equation, rather than the Dirac equation.

The standard approximation procedure which was mentioned pre-
viously reduced the Dirac equation to the following:

2me? |2m 4m?2 c?

E —V\p? h? i
[(1_)p + V=5 VV-V+ WG'(VV X P) |¥k = Exix

(1.64)

in which iy is now a two-component Pauli spinor. It is seldom possible
(or desirable) to solve (1.64) exactly: instead one regards the relativistic
corrections

k
amr® VXD
as perturbations. Effective mass theory is often discussed in terms of
(1.64), although all the relativistic corrections except the spin orbit
coupling term are frequently omitted. In place of Eqgs. (1.35) or (1.62),
one has

E \h2s?
[Ei(ko) + (1 )W] Anj (1.65)

2m c2

K% s? Rk
+ 2(4,”2 2 Viir+ S HH’)AM’ = Eu(k)Ayj
1‘/
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where

IL; = S’#i'(ko, r)* X (1.66)

2mc? 4mc? 4mc

[(I_E_V)p h [7V+—h2 (6 X VV) | (kg r) @

and the integration includes summation over spinor indices. V. is an
interband matrix element of the potential.

We now wish to investigate the symmetry properties of the one-
electron wave functions when these functions are not scalars but Pauli
spinors. The translational symmetry properties are identical, but
fundamental differences arise when rotations are included. There are
two different quantum mechanical operators which correspond to the
same transformation of points in space. It is these operators, rather
than the pflysical transformations themselves, which form the group
whose irreducible representations are required. This ““double valuedness”
has far reaching consequences. We will first examine its origin.

Suppose # is a constant spinor in some coordinate system (a subscript
1 now indicates the spinor index: pu = 1,2). Let R be a pure rotation
characterized by Euler angles «, 8, v. In the new coordinate system the
corresponding spinor is

2
u) = D Dy (R)us (1.67)
A=1

in which the matrix D'*(R) is

cos B[2 e~ Uiz gin B2 ¢y — “’/2)

sin B/2 eita—»¥2 cos B2 e+ (1.68)

D'2(R) = (
The matrix D'?(R) belongs to the D'? representation of the rotation
group. The double valuedness of the representation is manifested in
the appearance of half-angles in the matrix (1.68). If one of the Euler
angles is increased by 2z, the transformation is unchanged, but the
representation matrix changes sign. In particular, the matrices

b 2 = (50

both correspond to the identity.
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The wave functions of interest to us are not constant spinors, but
rather may be represented by

i = ¢ (r)v, (1.69)

in which v is a “Pauli” spinor in some coordinate system and ¢,*)(r)
is an ordinary function of position which is a basis function for the /th
irreducible representation of a point group, I'¥ (the extension to space
groups will be considered subsequently). Under the rotation R, ¢,*
transforms as follows:

n

Pr i) = ] [TOR); ¢, (r) (1.70)

=1

In this equation Pp is the operator which induces the operation R,
[I'(R)];; is the jith element of the matrix representing the operation
R in representation I'%, and the sum over j includes the # functions
which form a basis for I'¥. To determine the transformation properties
of ¢, ,, we must consider transformation of both space and spin variables.
Let the operator Qg induce the transformation R on the function i,
Qg may be regarded as a product of two operators: the Pg, given
previously, and Sg, which acts on the spinor v in accord with (1.67).
Then

Orpiu = D) D) [IO(R)]j; DV2(R)s, ¢ 02 (1.71)

i=1 A=1

= DT [I(R) x DY2(R)]js i iz

(74)

We infer from (1.71) that ¢;, transforms according to the direct product
representation: the representation whose matrices are direct products
of those belonging to I'® and those belonging to D', The double valued-
ness of DY implies that the direct product represzntation is also double
valued.

Let us consider the group G formed by the operators Qg which
correspond to the transformations R which belong to a point group g. The
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group G contains twice as many elements as g does: G is homomorphic,
rather than isomorphic to g. The general principles of quantum theory
require that the one-electron wave functions form bases for the irreducible
representations of G. The represernitations of g may be trivially extended
to form representations of G, merely by assigning the same matrix to
represent both operators of G which correspond to the same operation,
R, of g. There are, however, additional representations of G. These have
the property that the two matrices E and £ which correspond in G to the
identity, ¢, of g have characters which differ in sign. One-electron wave
functions which include spin transform according to these additional
representations of G. This follows from (1.71), since the elements of the
direct product representation I'”(R) x DY(R) contain the half-angle
functions of D'2(R), so that the elements of £ differ in sign from those of E.

The direct product representation may, however, be reducible as a
representation of G. In this case, one can write symbolically

I x DUz = 2’ ¢ Byt 1.72)

1

in which the 9* are irreducible representations of G. The physical inter-
pretation of this equation is that it expresses the splitting of a degenerate
state I'¥ by spin orbit coupling into states of symmetry p{*. Only the
additional representations of G occur on the right side of (1.75). This
is true since if the character table itself is considered as a matrix,® the
character table appropriate to a direct product group is the direct product
of the matrix character tables of the groups which are factors of the
product group (Murnaghan, 1938).

Up to this point, only proper rotations have been considered. The
extension of the results to point groups which contain improper rotations
is easily accomplished when one observes that any such group is either
isomorphic to a group containing proper rotations only or else is formed
by supplementing a group containing proper rotations only by the product
of its operations with the inversion J. Further, a Pauli spinor is invariant
under inversion: the representation matrix in D'? for the inversion is

8 A character table may be considered to be a matrix whose rows designate
classes and whose columns designate irreducible representations.
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just the unit matrix. Hence for any operation R, we may set
DY(R) = DY*(JR). 1t is then possible to apply (1.71) to obtain the direct
product representation of a point group containing improper rotations.

The determination of the representations of simple space groups is
essentially similar to the discussion given in Section 1.6. To each transfor-
nation {a|t} previously considered, there correspond two quantum
operators. The description of the Brillouin zone is unaltered, and one
must determine, as before, the group of the wave vector. Bloch spinors
of the form ¢¥-F u,(r), where u, is a spinor, are basis functions for the
irreducible representations. The point group of the wave vector is now a
double group, and a wave function must transform according to one of the
“‘additional” representations of this group.

We will not explore the additional representations of double point
groups in detail. Character tables for these representations for the simple,
body-centered, and face-centered cubic structures, the diamond, and the
hexagonal closed-packed lattices are given in the work of Elliott (1954).
The number of additional representations is usually smaller than the
number of representations in the corresponding single point group. For
instance, the double group of the center of the zone, I', in the simple,
body-centered, and face-centered cubic lattices contains sixteen classes;
hence only six additional representations. Thus, the classification of
electron states is in a sense less detailed when spin is included. Fortunately,
in many interesting applications, the spin orbit coupling can be regarded
as a perturbation on a level structure calculated ignoring the spin. The
sixfold degenerate states at I', H, P (I, [, etc.) are each split into
a fourfold and a twofold degenerate state; but the originally fourfold
degenerate states at these points (I'}y, I7,’, Pj) are not split. The fourfold
degenerate states at X, W, and L are split into two doubly degenerate
states each. The 100 axis, A4, is the only symmetry axis for which there
are two distinct irreducible representations. As a consequence, accidental
degeneracies which might be predicted along symmetry axes in a calcula-
tion without spin orbit coupling will be removed when spin is included,
except possibly along the A axis. Both the fourfold degenerate states
A and A, are split. In the case of weak spin orbit coupling, the removal
of the accidental degeneracies may in some circumstances produce regions
of rapid variation of E(k), and hence small effective masses, in a narrow
band.
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1.11 Time Reversal Symmetry

In addition to the spatial translations, rotations, and reflections,
it is necessary also to consider time inversion. This operation is of a
different nature from those previously considered in that it is represented
by an antiunitary operator, which we denote by . (An operator Q is
antilinear if it satisfies

Qe + b¢) = a* Q) + b* Q¢ (1.73)

for arbitrary functions ¢ and ¢. The operator is antiunitary if in addition
to (1.73), we have
(¢, 6) = (A, Q4) (1.74)

Application of the time reversal operator twice to a wave function must
restore the original state; but it does not follow that Q2 is the unit
operator. Instead, it can be shown (Wigner, 1959) that

Q=1 (1.75)

The plus sign applies in a theory in which spin is neglected, or to a system
containing an even number of spin } particles; the minus sign applies
to a system with an odd number of spin i particles (in particular to
one-electron theory including spin). Further, it can be shown that, for a
Hamiltonian operator H which may be considered to be a function of
position, momentum, and spin operators:

QH(r,p,8)Q~' = H(r, — p, — ) (1.76)

Except when an external magnetic field is present, the Hamiltonian of
a physical system will be unchanged by the simultaneous transformations
p - —pP; 8 - — 8, so that the time reversal operator commutes with
the Hamiltonian.

In the simple Schrodinger theory in which spin is neglected, the
operator Q is just the operator K of complex conjugation

Q=K Q=g (L.77)

If spin is included, the operator must anticommute with each of the
Pauli spin operators. This is accomplished through the choice

Q=0,K (1.78)
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0 —i
%=\ 0

(It will be observed that ¢, anticommutes with the real operatorsg,, o,.
The inclusion of K ensures that  anticommutes with ¢, also.)

We will now show that time reversal requires, for a crystal, that
E (k) = E(— k) regardless of the spatial symmetry of the system (Kramers’
theorem), and that a double degeneracy of the band system throughout
the Brillouin zone must exist if the potential has a center of inversion.
We consider a Hamiltonian including spin orbit coupling

in which

h
inp 2@ (V XD) (1.79)

p2
H=g +V+

[The additional terms present in (1.64) do not affect the argument and
are therefore neglected.] The eigenfunctions of (1.79) are of the Bloch
form

Hyp = E®); e = e T uy,

where #, is a Pauli spinor. Application of the time reversal operator
leads to (since Q@ commutes with H)

QHpx = HQx = Hoy f* = E(k)oy Juc* (1.80)
Hence o, Ji* is an eigenfunction of H with eigenvalue E(k). But
oy Pic* = em K Taw(r)

in which w, is a Pauli spinor with the full periodicity of the potential.
Evidently o, {5* is a Bloch function for a state of wave vector — k, and
we have

Ek)=E(—k) (1.81)
Next, consider the equation satisfied by w, for the Hamiltonian of
(1.79). It is
2
4m? c?

— E®)ux(r)  (1.82)

p2

2m

3 I3
+ V) + kep+ - (VV xp)+

m?2 c?

k- (6 X V)| ux(r)
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Let us apply the inversion operator J to this equation. Then p changes
into —p and r into —r. We get

%ﬂkv(_‘)_%k'PﬂLﬁa'(W(—r)><p) (1.83)
— %202 k- (O’ X VV(— r)) uk(—- l‘) = E(k) uk(_ I')

If V(r) = V(—r), we see that this equation is the same as (1.82) with k
changed into — k. Hence, if the potential has inversion symmetry,

s x(r) = wr(— 1) (1.84)

The solution of (1.82) for wave vector — k is required by (1.81) to have
the same energy as the solution for k. But, at a general point in the zone,
the wave function is not an eigenfunction of the inversion, so #,(— r)is
a different function from #,(r). Hence these are two different wave
functions corresponding to the same wave vector which have the same
energy. Thus we conclude that, if the crystal potential has inversion
symmetry, there is a double degeneracy of the band structure throughout
the zone.

Representation theory is greatly complicated by the presence of
an antiunitary operator in the group. If U is a spatial transformation,
the group is augmented by including transformations of the form QU.
Then one finds that the representation matrices which transform the
eigenfunctions under the operations of the group do not form representa-
tions of the group, but rather are corepresentations. For details of the
theory of corepresentations, the book by Wigner (1959) should be
consulted. Time inversion does not lead to any further classification of
eigenvalues (no additional quantum members). Extra degeneracies may,
however, be produced. The circumstances in which extra degeneracies
may arise have been discussed by Herring (1937a) and Elliott (1954).



Chapter 2

Methods of Calculation

2.1 General Discussion

In this chapter we shall survey the principal methods of calculating
an energy band system for a particular material. We shall first assume
that the effective crystal potential for which the one-electron wave equa-
tion is to be solved is known. Our interest will be in the procedure
according to which this equation is solved, subject to the appropriate
boundary conditions. Subsequently we will explore the problem of the
determination of the crystal potential in the Hartree-Fock approximation.
Reviews of the general principles and methods of band theory have been
given by Jones (1960), Pincherle (1960), and Reitz (1955).

It is convenient to use the so-called atomic units in an energy band
problem. We set # = 1. As unit of length we take the Bohr radius of
hydrogen a, = k?/me?. If this is to have the numerical value 1, we must
choose me? = 1. A convenient unit of energy is the Rydberg, which is
the ionization energy of hydrogen, ¢*/2a,. In order for this to have the
numerical value 1, we must have ¢? = 2, from which it follows that m = }.
Finally, the velocity of light can be determined from the dimensionless
relation kcfe? = 137.037 to have the numerical value ¢ = 274.074. In
cgs units, the present unit of length is gy, = 5.2917 X 10 cm; also
note that 1 Rydberg = 13.6049 ev.

The one-electron Schrodinger equation now has the form

(— P2+ Vinm)is = (2.1)

in which we refer to the nth state belonging to the jth row of the sth
irreducible representation of the group of the wave vector k. Except in

55
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cases where confusion would otherwise result, we will suppress some or
all of the indices, ¢, 7, ». If the potential V in (2.1) is derived from the
Hartree-Fock equations, it will depend on the state considered, and thus
bears a full set of indices. For the present we will ignore these complica-
tions and consider the potential V' to be the same for all states. The
boundary conditions for this equation are implied by the translational
symmetry of the function, which is expressed by Bloch’s theorem

[Eq. (1.8)]
it 4 Ri) = ¢ T gu(r)

In addition ¢, has the rotation and reflection symmetry implied by the
representation to which it belongs.

The rather diverse methods of finding solutions to (2.1) have this
in common: for a three-dimensional problem, they all involve expansion
of the unknown function in sets of known functions, e.g., plane waves,
products of radial functions and spherical harmonics, solutions of an
atomic self-consistent field problem, etc.

It is generally possible to choose the functions appearing in the
expansion in such a way that some of the requirements on i, are satisfied
initially (for instance we may expand iy, in terms of a set of functions which
satisfy Bloch’s theorem). The remaining requirements on the wave
function are then to be satisfied by the choice of the coefficients of the
functions in the expansion. The various methods of calculation differ
among themselves in the choice of the particular condition which is
initially satisfied, and in the choice of the set of functions used for the
expansion.

2.2 Plane Wave Expansions

A choice of functions for expansion which appears very simple and
direct is a set of plane waves whose wave vectors are reciprocal lattice
vectors. We have seen in Section 1.2" that a function of the form
exp [¢(k + K,)-r], where K, is any reciprocal lattice vector, satisfies
Bloch’s theorem for wave vector k. Rather than proceed directly to the
expansion (1.15), it is desirable generally to form symmetrical linear
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combinations of plane waves which transform according to one of the
irreducible representations of the group of the wave vector.! Such a
combination is expressed as

Ol = D Cli(K,) S5 5T 2.2)
K”

The sum in (2.2) runs over selected groups of reciprocal lattice vectors
which are chosen in the following way: Let & be an operator in the point
group of k. Then, for a given K, only those functions are included which
have the wave vectors a(k + K,) where a runs over the operations of
the point group. The superscript ! indicates that @}, is the /th such
combination of this type. We will now show how the coefficients are
determined, following Wigner (1959).2

Let [a]; ,; be the mjth matrix element of the matrix representation
of the operator a in the sth irreducible representation of a group.
A function @/ is said to transform according to the jth row of the ith
irreducible representation if, for each a in the group,

a®i= D [alym D" (2.3)

m

The sum over m in (2.3) runs from 1 to 4(¢) where 4(7) is the dimension
of the irreducible representation.3 There are d(¢) functions @7 (including
@), all of which satisfy an equation similar to (2.3). Equation (2.3) is
now multiplied by [a],, ,,.;- and the result is summed over all the opera-
tions of the group. We have

1 L. Eyges (1961, 1962) has attacked the periodic potential problem by expressing
the Fourier coefficient of the wave function as a product of a function dependent
on |k + K,| only times a Kubic harmonic (in cubic lattices). His procedure is
equivalent to the one described here.

2 A general discussion of the construction of symmetrized linear combinations
of plane waves has been given by Schlosser (1962) for cubic lattices.

3 The action of & on the function @ is the following: @ is a function of the position
vector r. The operator & acting on r sends r into r’: r’ = ar. Then a®P(r) = @(a ™ r).
It is required by (2.3) that @(a~'r) be a linear combination of the original ®(r)
belonging to the i'th representation.
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D (ol mipa®i= D ) [alimi ()i m D

o o m

In order to evaluate the right-hand side of this equation, use is made
of the following theorem (for proof, see Wigner, 1959, p. 79):

h
D [&lir e [0 mj = 2@y 3 0 St (2.4)

-3

(where % is the order of the group). Hence we have

. h ,
2 [alir,mir @D = a0 Oiiv 07 D™ (2.5a)

and in particular,

o= 40 D [a)i ;0 (2.5b)

a

Now let F be an arbitrary function which can be expressed as a linear
combination of functions @/ belonging to the various rows of the
irreducible representations of the group

F=) ai®i (2.6)
4]

where the a! are coefficients. Let us form

D lalijiaF = X aii” D [al, j;adi 2.7)
o i’j’ «

h , , B
= E A S §:i @i = a i
a0 < a8y 6j D; a0 a! @

i

Equation (2.7) expresses the result we desire: If we take an arbitrary
function F, and form the sum over all the operations of the group of
[a]; ;; aF, the result, if not zero, is a function transforming according
to the jth row of the 7th irreducible representation.
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This procedure is quite general, and may be applied to form sym-
metrized linear combinations of plane waves, spherical harmonics, or
other functions. For the particular case of plane waves, we note that

aexp (tk-r) =exp(ik-alr) = exp la"lk-r)

Since the @/ are, in this case, linear combinations of plane waves, a single
plane wave can also be regarded as a linear combination of different @,
so that (2.7) is applicable. We then have

i < D) [l exp [ia(k + K,) 1] (2.8)

In the particular case of a one-dimensional representation the matrix
element [a]; ;; is just the character of the operation in that representation.

As an illustration of the procedure, we obtain the linear combination
of plane waves whose wave vectors are of the type (2x/a) (1, 1, 0) trans-
forming according to (the row) xy in the I,y representation pertaining
to the Brillouin zone of the body-centered cubic lattice. Consider an
orthogonal basis of functions transforming like xy, xz, yz. On this basis,
matrices may be constructed representing the operators of Table I.
For example the operator (y, — x, 2) is represented by the matrix

—1 0 0
0 0 1
0 —1 0

and the operator (z, x, —y) by

0 1 0
0 0 —1
—1 0 0

Only the operators which have a nonzero (xy, xy) element contribute to
the sum. If we let @ be the operator (y, — «x, z), then for K, = (27/a)
(1,1,0) we get a K, = (2n/a) (1, —1,0) and have a contribution
to (2.8):

— 2nilalx~3)
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After going through the table of operators, we find the desired combina-
tion:

4 [e2ni/a(x +9) + e— 2nila(x +y) _ p2nifa(x —y) _ p— 2nmifa(x — y)]

=38 COS%T:E (x +9) — <:os—2aﬁ (x — ) (2.9

There is a simpler procedure for determining the coefficients of a
symmetrized combination of plane waves which is useful in many cases.
This rests on the fact that the Fourier transform of a spherical harmonic
is proportional to the same spherical harmonic in k space. Let K be a
vector in k space with spherical components K, K;, K,, with reference
to some fixed axes. Then

5 KT Y, (6, ¢) dw = 473 jy(K7) Y im(K o, K ) (2.10)

The basis functions for the various representations of the wave vector
groups given in Chapter I are linear combinations of spherical harmonics
of the same / but differing m. Hence, the Fourier transform of such a
combination in ordinary space is proportional to the same combination
of spherical harmonics in k space, and the constant of proportionality
depends only on / and the magnitude of k. For example, a basis function
proportional to xy leads to a plane wave expansion in which the coefficients
are proportional to K, K,, as will be seen to be the case in (2.9).

For example, suppose we wish to make a linear combination of plane
waves with wave vectors of the type (27/a) (1,0, 0) which transform
according to x% — y? in the representation H,,. The coefficients in the
expansion will be proportional to %> — %% Hence the combination
will be

e2m’x/u + e—2m’x/z _ e2m'y/a _ g—2m'y/a ] (COS 2nx — oS 27;}') (211)
a

Application of Eq. (2.8) also will yield a combination proportional to (2.11).
Finally, the reader should note that if we make Taylor series expansions
about the origin of the combinations (2.9) and (2.11), the first nonvanishing
term is proportional to xy in the case of (2.9) and to (#2 — ¥2) in the case
of (2.11). Higher order terms will be proportional to other combinations of
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spherical harmonics which transform in the appropriate way [for instance,
x* — y* in the case of (2.11)]. The expansion of symmetrized linear
combination of plane waves furnishes a practical method for the construc-
tion of Kubic harmonics (Flower et al., 1960).

One must also note that it will sometimes be possible to make more
than one symmetrized linear combination of plane waves which trans-
forms according to a particular row of an irreducible representation from
plane waves of the same type. This may easily be seen if we consider for
example the construction of a plane wave combination transforming like x
in the representation I of the full cubic group using plane waves of
the type (2n/a) (3, 2, 1). Evidently there will be three such combinations
accordingas 2, = 4 3, 4 2, + 1. One must be careful, in any application,
to make sure that all pertinant combinations have been obtained.

A table of the symmetrized linear combinations of plane waves which
transform according to the irreducible representations which contain
s, p, and d functions in their expansion is given for a point of full cubic
symmetry in Appendix I

We may now proceed with the calculation of energy levels. The wave
function is expressed as a linear combination of the functions @},

Yo = D) alks Dl (2.12)
1

Equation (2.12) is substituted into the one-electron Schrédinger
equation (2.1). We then multiply both sides of the result by @}, and
integrate over the entire crystal (which consists of N unit cells of volume
£2,). Functions which belong to different representations of the space
group, or to different rows of the same representation are orthogonal.
In addition, we shall normalize our functions @}, (for instance, by dividing
by the square root of the sum of the squares of the coefficients C’ of
the waves in the combination) so that

O F ol asr = N, 6ir; 650 Owrk O (2.13)

Since all of the plane waves in any symmetrized combination have
wave vectors of the same magnitude, it follows that
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— 2@ =h, 2@ (2.14)
where
h”(l) =k + Kn(l)

The combinations @ are ordinarily listed in order of increasing |[h?|.
We obtain from (2.1)

N, ak/, (b2 — E) + ak,j kll* V@ ;d3r =0

1

The crystal potential does not have any (nonvanishing) matrix elements
between functions which belong to different irreducible representations
or to different rows of the same representation of the space group. Hence
we have

ukz +Zak, =70 (2.15)
in which
70— b % 7l a3 21
1/11 NQ de V¢k,d7’ (6)

There is one such equation for each value of /. Now let us examine
the structure of the quantities V,,:

Vin= D) = C* (K, )*Cl(K)Sexp [i(h,® — b)) - r V() dd  (2.17)
= NQ,

Although the wave vectors h¥), h!) are generally not reciprocal lattice
vectors, their difference must be a lattice vector, say K. Since the poten-
tial V(r) is periodic in space, it can be expressed as a sum of potentials
defined within one unit cell of the lattice only.

=2 V'(r —Ry) (2.18)
Rn

V'(r — R,) is different from zero only in the unit cell centered at R,.
It follows from the periodicity of the potential that all the V'(r — Ry)
are the same except for location. The integral in (2.17) has the form
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3 [ e = 37 B e
R, R,

n

The integral on the right-hand side has the same value in each cell of the
lattice. Further, exp (K- R,) = 1 for all R,. Let us define a “Fourier
Coefficient”” of potential V(K,) by

V(K,) = —SeiKS'r V'(r) d3r (2.19)

(the integral is evaluated in the cell at the origin). Then (2.19) becomes
N, V(K,). The matrix element V), is a linear combination of Fourier
coefficients of potential.

Vin= 2 bi(Ks)V (K) (2.20)

The coefficients 5(K,) are determined from the coefficients C,’ of the
plane waves appearing in the expression for @'

b= D CV*(K,") C'(K,) (2.21)

where the summation is restricted to values # and »’ such that
h,’ — h, = K. After substitution of (2.20), Eq. (2.15) becomes

ai(h? — E) + D dk; [ P b,q(K,)V(Ks)} =0 (2.22)
T s

A nontrivial solution of the infinite set of linear equations (2.22) exists
if and only if the determinant of the coefficients of the unknown quantities

al; is zero:

det |(h2 — E) 6w + " bin(K,) V(K| = 0 (2.23)

Alternatively, we may say that it is necessary to diagonalize the matrix
representing the Hamiltonian on the basis of functions which are sym-
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metrized linear combinations of plane waves belonging to a particular
row of a given irreducible representation. The matrix elements are,
effectively,

Hyr=h02 65 + D bi(K)V(K) (2.24)

As an illustration of the determination of the coefficients b;,, consider
the expectation value of the crystal potential calculated with the pre-
viously determined functions transforming according to I,;. If we
normalize these functions, our expectation value is

11! ‘(ani/a(x +9) + e—2ntla(x+y) _ e2mﬁ/a(z—- y) + e~ 2nifa(x — 'y))(2 V(I‘) a3y
This gives a contribution to (2.24) which is
2n 27
V() —2v e (2,0,0)| +V — 2,2,0) (2.25)

In practice, the appropriate linear combination of Fourier coefficients
of potential may be determined easily and systematically, once the
symmetrized functions @ have been determined, from a table of the
differences of the wave vectors of the plane waves which contribute to
the expansion.

2.3 Plane Wave Expansions: An Example

As an example of the calculation of energy bands with the use of
plane wave expansions, we will determine the energy of the state I’
in the body-centered cubic lattice (Callaway, 1959). The crystal potential
considered will be that of a lattice of point charges of atomic number Z
and lattice parameter 2. This model system is particularly well adapted
to a calculational technique based on plane wave expansions since the
Fourier coefficients of the crystal potential, V(K,) are very simple. To
determine these coefficients, consider Poisson’s equation for the potential
energy function. In atomic units, this equation is
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V2V = 8ap (2.26)

Fourier expansions for the potential and the number density p are
introduced.

V= V(K)e T p= Y p(K,) e T (2.27)

V(K,) is given by (2.19) and similarly,

1 iK,, -
p(K,) = —— S p(r) &™n T a3y (2.28)
2
The integral in (2.28) includes the unit cell at the origin only. £, is
the volume of this cell. With these substitutions, we get from (2.26)

87

V(K,) = T Kef

(Ka») (2.29)

The case K, = 0 must be considered separately. In spite of appearances,
Eq. (2.29) possesses a finite limit in this case.

Equation (2.29) is quite general. For the model considered, within
the cell centered at R, = 0, we have

p) = Z[8(r) — 1/2] (2.30)
Hence p(K,) = Z/£,, and

8nZ
T K20,

For the body-centered lattice, 2, = 23/2, and K,2 = (4n%/a’)n? where
n% = n,% + ny2 4+ n,2.  Then

V(K,) = (2.31)

VK, = — 2 (2.32)

man2

We define V(0) as the limit of V(K,) as K, — 0. Thus

. K,
V(0) — — SnKllriof’(K_z) (2.33)

To obtain this, we expand ¢X-T in powers of K, retaining terms through
second order
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2

p(K) = 0 Hp(r) d3r + ijp(r) (K-r)d3 — —I—;—jp(r)r2 cos? 0 d"r]

(Here 0 is the angle between K and r.) Since the charge distribution is
neutral, the first integral in this expansion vanishes — since it has
inversion symmetry, the second term also vanishes. In the third term,
we put cos? 6 = 4 + %P, (cos 0) (P, is the second Legendre polynomial).
P, is a basis function for the I}, representation in a cubic crystal; hence
if the charge density has cubic symmetry (I'}) the integral of this function
must vanish. Thus

P(K) 1 2 13
hm0 K2 60, p(r)r® d3r
and
V() =+ An (x)r*d3r (2.34)
80, P ’

For the model considered, this integral becomes

V(0) = — ;gozz jﬂ a3 (2.35)

This integral can be worked out exactly for cubic lattices. In the case of
the body centered cubic lattice, the result is:

.Qo—ljrz a% = (]/221/100)a2

Then
V(0) = —1.24547/a (2.36)

It is now necessary to determine the matrix elements of the potential
between the symmetrized combinations of plane which belong to I’
The lowest (in kinetic energy) such combination was determined in the
preceding section. The reciprocal lattice vectors which have to be con-
sidered include those of 200, 211, 220, 310, 222, and 321 types, etc. The
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combinations are given in Appendix I. Note that in the case of the 211
and 321 waves there are two and three linearly independent, orthogonal
combinations, respectively, of plane waves which transform according
to each of the rows of the Iy, representation. The 200 waves do not
contribute. The matrix elements are evaluated in the fashion discussed
in the previous section. For example, the expectation value of the
potential using the combination formed from plane waves is found
[see Eq. (2.25)] to be — 0.7679 Z/a.

For arbitrary values of the parameters Z and a, it is necessary to
determine the eigenvalue by numerical techniques. Let us, however,
consider the problem in the light of perturbation theory, in which the
crystal potential is considered as a perturbation. We use the notation
of the previous section. The perturbed energy of the state formed from the
l/th linear combination of plane waves is, to second order

Vo2
E® —ho2 4 v, + 2 A}lmz’ j LWW (2.37)
vl

The orders of magnitude of successive terms in the perturbation
expansion may easily be determined. The kinetic energy h®? is of order
4n2/a?. The matrix elements of the potential are proportional to Z/a;
hence the second order term is of order Z2. Each successive term in the
expansion introduces a matrix element and another energy denominator
in each order, and thus gives an additional factor Za. The nth order
term (counting the kinetic energy as of order zero) is proportional to
(1/a®) (Za)". Evidently the quantity aFE/Z is a function of the single
variable Za:

aE|Z = {(Za) (2.38)

Perturbation theory yields a power series expansion of the function f(Za)

(lowest term is of order 1/Za). These results are general. For the case

of the lowest state belonging to I',;’, evaluation of the coefficients in the
perturbation series gives

872 Z

E= 7”2 —0.7679 = —0.00500 2 + ... (2.39)

The rapid decrease of the coefficients with increasing order should

be noted. A numerical calculation of the energy of this state by matrix
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diagonalization shows that the first three terms of the series as given in
(2.39) are a good approximation to the energy up to Za ~ 25. There are
two reasons for the apparently good convergence of the series: In the first
place, the minimum energy denominator in (2.37) is 8n%/a?; secondly,
a considerable amount of cancellation occurs in the computation of matrix
elements such as (2.25). This cancellation would not occur if we had
considered an s-like state. However, the plane wave expansion procedure
does cease to be useful for large Za. Under these circumstances, the
energy of a state must approach a limit independent of @ (— Z2/9 in the
present case), corresponding to a hydrogenic wave function. Also, the
bandwidth must fall off exponentially as Za — co.

2.4 Orthogonalized Plane Waves

A very serious difficulty usually arises in the application of the plane
wave expansion procedure to less artificial problems: The convergence
of the expansions may be poor; plane waves of large kinetic energy being
important in the wave function. Further, the expansion for a state of
wave vector k will converge to the state of lowest energy for that wave
vector, and this will usually be an uninteresting state. For example,
consider sodium. The states which are important in the study of the
electronic properties are those related to 3s and 3p free atom wave func-
tions. A plane wave expansion will generally, however, converge to a
1s state. In principle, it would be possible to circumvent this problem
by finding higher eigenvalues of the Hamiltonian matrix, but to obtain
any degree of accuracy, it would be necessary to employ such large
matrices that the calculation would be impractical.

A way out of this difficulty was proposed by Herring (1940). Consider
a crystal with one kind of atoms only. Suppose that wave functions
for the core states (1s, 2s, 2p in the case of sodium) are known (perhaps
from a self-consistent field calculation for the free atom, the assumption
being made that these are unaltered in the solid) or that they can be
calculated by other methods. Let a core function pertaining to state g
be designated #(r). In the designation appropriate to the free atom j
stands for the three quantum numbers #, /, m, with / the angular momen-
tum quantum number and m the 2-component of angular momen-
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tum. These functions are assumed to be orthonormal. It is possible to
combine such “free atom” functions to form functions possessing the
periodicity required by Bloch’s theorem: Let R, be a direct lattice
vector; then the required functions are

1 ik.
$rir) = =D ¢ Tray(r — R, (2.40)
v
Observe that

1
bri(r + Ry = tZ “Buui(r + R, — R,)
NR

kR
¢

k- (R, —R))
[ e u;[r — (R, — R,
V_N 1127 7[ ( l)]

= Bigy i) (2.41)

The last step follows since the sum over R, may be replaced by a sum over
R, — R, which is identical with that in (2.40). N is the number of atoms
in the crystal and the factor l/VZV ensures normalization of the ¢ ;.
Such functions are often called Bloch functions. They are solutions of the
Schroédinger equation only if the overlap of functions on different atoms
can be ignored. (This will usually be a good approximation for core
functions.)

Next, observe that a plane wave of wave vector k can be made
orthogonal by the Schmidt process to the core functions of an equivalent k
(orthogonality to functions of inequivalent k is guaranteed by the general
theory). Let us denote a function constructed in this way by X, an
orthogonalized plane wave.

g¢k r

Xy = N.Q 12 Z/"ki ¢k7 (2.42)

The condition that

S?Skl ) d% =0 (2.43)
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determines the “‘orthogonality coefficient” u,, as follows:

1’:1 1) X% (r) d3r = 1 K- Ry w*(r — R,) d% — (2.44)
Q2N
JK By~ R,
3 i 3 e Rt — ey o
7 n,n'

This equation may be greatly simplified if one makes use of the ortho-
normality of the ‘“‘atomic” functions #. It is also assumed that these
functions do not overlap:

Su;*(r — R,)ui(r — Ry) d%% = 8, 01 (2.45)

Also, the integral in the first term on the right-hand side of (2.44) is the
same in each cell. Hence, (2.43) yields

S 'K T 4% (r) d3r (2.46)

o]

1
Mkl = [ORE

An orthogonalized plane wave is a function which behaves as a
plane wave at large distances from an atom, but possesses the rapidly
varying character of an atomic wave function néar any nucleus. Since
both of these characteristics must be possessed by electron wave functions
in solids, the orthogonalized plane waves are very useful functions for
use in wave function expansions.

As an example of the construction of an orthogonalized plane wave,
let us orthogonalize the plane wave with k=0 to a 1s hydrogenic
function. The orthogonality coefficient is y, ,:

a3

1/2
s = (-) o= (2.47)
T

1 (a2 o 2
#O,OZW(F) eT v dr =8 230,

Then, in the cell centered at R, = 0,

X, = W (1 — 8¢ (2.48)
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This function possesses the single radial node characteristic of 2s func-
tions (the node here occurs at ar = 2.07, while in the 2s hydrogenic
function similar to (2.47) it occurs at ar = 2). For» >> 1/«, the function X,
becomes flat. We shall see in subsequent sections that this behavior is
characteristic of s-like states at the center of the zone.

Symmetrized linear combinations of orthogonalized plane waves
which transform according to a particular irreducible representation can
be formed with exactly the same coefficients as in the case of ordinary
plane waves which was previously discussed. The wave function which is
being determined is conveniently expanded in a series of symmetrized
linear combination of orthogonalized plane waves. Some degree of
complication arises because the orthogonalized plane waves are not
mutually orthogonal. Evidently it is necessary to consider the simulta-
neous diagonalization of the matrices of the Hamiltonian and of unity
on the basis of these functions.

We now consider the determination of the fundamental matrix
elements: We define

(X |H|Xy) = SX,’:, HXy d% = 56‘“‘"’ (— V24 V)ekrgsy —

NG,

1 , g
N2 2 [H:’i’s(ﬁ:’i' He™rdd + ,Ukije—’k T Heyj(r) d3 +
0’ <
7

P #;,,,S(ﬁ;:,,, Héy;d% (2.49)
i’
The symbol (f|g) will occasionally be used to represent the scalar
product :

(fg) = S!‘*gd%

Successful application of expansions in orthogonalized plane waves
require that the core functions ¢,; be eigenfunctions of the same
Hamiltonian as is used for the valence states of interest. This is essential
since otherwise the valence electron states which one is attempting to
construct will contain a portion of the real core states, and hence yield
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an incorrect energy value. Such errors will produce an energy value
which is too low. The question of error will be considered in more detail
subsequently. The ¢y, are assumed to be orthonormal eigenfunctions of H

Héuj=Ejdxj;  (bxildwir) = Ok x +x, Ojjr (2.50)
Also observe that

1
N2,

Ee—ik“r (— V24 V) ek 1@ = K200 + V(k— k) (2.51)

[k — kK’ must be a reciprocal lattice vector; otherwise (X |H|X}) is
automatically zero.] Now (2.49) simplifies to

(Xoer | H | X)) = B2 S + V(k — k) — D urj pusi E; (2.52)
i
We can then deduce immediately that

(X [ X)) = S — D i p (2.53)
i

The products of the orthogonality coefficients u,; in (2.52) are usually
positive while the energies E; and the Fourier coefficients V(k — k')
are negative. Hence the orthogonality terms tend to reduce the contribu-
tion from the potential energy to the matrix elements. In this respect,
they have an effect similar to that which would be produced by a repulsive
potential.

The orthogonality coefficients u,; are actually rather complicated
expressions. The sum over j includes core states characterized by
quantum numbers #%,/, m. If wave functions for states of differing
azimuthal quantum number m but fixed » and / have the same radial
wave function, the sum over m can be carried out. It is then possible to
express the second term in (2.53) in terms of radial integrals: Let us put

u;(r) = Ryu(r) Yin(6, ) (2.54)

in which Y, is a normalized spherical harmonic, and R, is a radial
function, normalized so that
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j ‘R”,(r)lzﬂ dr =1
0

Then, by expanding ¢**

theorem, it is found that

in spherical harmonics and using the addition

47
2wy = - ) 2L+ VPocos b lum T (255)
. 0
7

n,l

In this equation 0, is the angle between the wave vectors k and k',
P, is a Legendre polynomial, and

[ee]

Ly = S Ti(k7) Ru(r)r2 dr (2.56)
6

[7, is a spherical Bessel function: 7,(x) = V;/Zx Jii12(%).]

In the practical application of the OPW method, the core functions
u; are hardly ever known exactly. It is important, then, to show what
sort of error is induced in the energy value of a valence electron state by
orthogonalization to incorrect core functions. We follow the analysis
of Herring. Suppose, then, that the exact eigenfunctions of the Hamil-
tonian are denoted as iy, (energy values E, ). The subscript 7 is used
to denote core state. Let a particular approximate valence electron wave
function be iy, (an approximation to i), this being the function for
which the expectation value of the Hamiltonian, E;m, is a minimum,
subject to the condition of orthogonality to the approximate core func-
tions ¢y;. The functions i, form a complete set, and all functions are
normalized.

Then we can expand iy, in the iy,

o = 2 (hielibro) s (2.57a)

s

Similarly, we have for the energy

Exo= (dhwolH|tbo) = O, |(es|tho) |2 Exs (2.57b)
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The difference between the ‘“‘exact” energy, Ey, and this is given by

Exo— Exo= 2, |(hxs|tbwco) |2(Exo — Exc) (2.58)

Only the core states have energies lower than Ey,. Then we overestimate
the error if we include only core states, 7, in the sum in (2.58)

Exo— Ero < D) |(thildo) |2(Exo — Ex)

7

Since iy, is orthogonal to the approximate core function qS;q, we may
apply Bessel’s inequality in the form

| (ilib) |2 = 1 = [(ilibio) |2 + | (s bs) |2 (2.59)

Hence we have

Exo— Exo < ) [1 — |l ) [71(Exo — Ens) (2.60)

7

Since the scalar product (yy;|dy;) is analogous to the cosine of the angle
between vectors, we can see that, in a sense, the error produced by
orthogonalization to inaccurate core functions is a second order correction.
But, in practical cases, the energy differences in (2.60) which are important
may be quite large (of the order of 10 to 50 rydbergs); hence it does
not take large departures of qSl;] from ¢y; to produce significant effects.
This question is a most serious one in the application of the OPW
procedure.

2.5 The Pseudopotential

J. C. Phillips and L. Kleinman (1959) have given a discussion of the
Orthogonalized Plane Wave method which shows clearly the significance
of the orthogonalization terms. Let i, be the exact (valence) electron
wave for the sth irreducible representation of wave vector k (we suppress
the other indices) and let ¢y; be a wave function for a core state with the
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same wave vector (say a Bloch function). Since the valence function j;
must be orthogonal to the ¢y, it is convenient to write

ki = vki + Zafqtﬁkj (2.61)

where
akj = — (ralvig) = — Ssblff(r)ka(r) a¥ (2.62)

The orthogonality of ¢,; to the core states is insured by (2.62). We may
expect vy, to be a ““smooth” function even near a nucleus since the rapid
variation of i, in that region really is due to the requirements of ortho-
gonality. We are going to determine the equation satisfied by vy,.
The core function ¢y, in (2.61) must be an eigenfunction of the crystal
Hamiltonian: Hey; = Ey; ¢y;. Then if Hiy; = Ey; Jy; we get:

Huy; + 2 ak; (Exj — Exi)bx; = Exi vii (2.63)

7

We now define a “pseudopotential” V,, by

Vo= aii(Exj — Exi) f:’ (2.64)
7. 1
Then (2.63) takes a familiar form:4
(H + Vp)vki = Ex; vk (2.65)

The repulsive pseudopotential so distorts the actual crystal potential
contained in H that the wave function of lowest energy for the modified

4The repulsive potential may also be represented in terms of an integral operator.
For an arbitrary function g(»), we have

Vyg(r) = E Vp(r,v')g(r') dsy’
where

Vp(rr) = D) (E—Exj) it (v') bui(x)

?
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problem (2.65) is the smooth function ;. A qualitative idea of the form
of the pseudopotential can be obtained if we make the following crude
assumptions. Suppose only one core function ¢,; contributes with any
importance to (2.64). Let this have the simple form, in any cell

;= Bjre s (2.66a)

In this region, it will be a reasonable approximation to put

v = C;7P e (2.66b)

Then
Vp= A=t e (s =ty (2.67)

where
A = (Exi — Exj) (vkil¢ws) Bi/C: (2.68)

Further, one will often have, approximately, p —# = 1. Then the
pseudopotential will be a repulsive Yukawa potential, which is a form
that has been used in studies of the alkali metals (Callaway, 1958b).
Phillips and Kleinman have employed a form of the OPW method with
the orthogonalization terms replaced by a repulsive potential for extensive
calculations of energy bands in semiconductors. It must be noted that
the pseudopotential depends in detail upon the wave function and energy
of the state being investigated. Hence, if a pseudopotential is not
regarded as merely an empirical representation of some complex physics,
it has to be determined in a self-consistent way for each state.

Bassani and Celli (1961) have observed that the total potential which is
the sum of the ordinary potential and the repulsive pseudopotential may be
sufficiently weak so that it may be treated successfully by second order
perturbation theory. A perturbation calculation of energy levels similar
to that of Section 2.3 is then possible without the previously troublesome
restriction that only states orthogonal by reasons of symmetry to core
states could be considered. For further discussion of the pseudo-potential,
see Cohen and Heine® (1961), and Brown (1962).

5 These authors observe that the repulsive potential defined by (2.64) is not
unique. Any combination of the ¢y, may be added to vy, in (2.61) without altering
Yi;. This indeterminacy may be utilized to make vg; as smooth as possible.
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2.6 The Cellular Method

An alternative approach to the problem of calculation of electronic
energy levels in solids is the cellular method. Historically, it was the
first procedure to be developed for this purpose (Wigner and Seitz, 1933,
1934; Slater, 1934; Shockley, 1937). In outline the method is extremely
simple: the Schrédinger equation is solved in one atomic cell subject
to the boundary conditions on the wave function and its derivatives
implied by Bloch’s theorem. For some states in simple crystals the
boundary conditions are sufficiently simple so that a solution can be
obtained with very little labor. (This is particularly true of states at the
bottom of the lowest valence electron band in cubic metals.) For many
states of interest, however, the complexity of the boundary condition
causes serious mathematical difficulties.

We discuss the cellular method here in accord with the work of
Von der Lage and Bethe (1947). It is first assumed that the crystal
potential is spherically symmetric within any given polyhedral cell.
This assumption is made so that it will be possible to separate variables
in the Schrodinger equation (such an assumption, which cannot be
strictly correct, is not required in procedures based on plane wave
expansions). The one-electron wave function for a state belonging to the
¢th irreducible representation of wave vector k can be expressed as a
sum of products of radial wave functions R,(E, ) and spherical harmonics

Y,.(0, ¢)
i = Z Ai,z{Z Ct Yim(6, 45)] Ry(E, 7) (2.69)

The radial functions satisfy the radial wave equation

14 (r2dR,)+(E_V_ wt”)&:o (2.70)

72 dr \ dr /4

in which V is the (spherically symmetric) potential. The combination
of spherical harmonics of different m values for a given / is of course
chosen to produce a function transforming according to a row of the
particular irreducible representation (i) considered. These functions are
conveniently called Kubic harmonics; some of them have already been
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given in Chapter I as basis functions for the irreducible representations
there discussed. Extensive tables of Kubic harmonics have been given
by Bell (1953) and by Altmann (1956).

The boundary conditions on the wave function are obtained as follows:
Let A be a point on some face of the atomic polyhedron, and let B be a

Fi1c. 7. Wigner-Seitz cell for the body-centered cubic lattice. The lower drawing
shows the lines of symmetry in a hexagonal face used in applying the boundary
conditions in the cellular method.

point perpendicularly opposite on a parallel face. These points are
separated by a lattice translation vector T. Since Bloch’s theorem
asserts that

it + T) = & T ifug(r)
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we have that

Pi(A) = T i (B) (2.71)
It is usually possible to restate the boundary conditions to refer to values
of the function at a single point.

For example, let us consider states in the body-centered cubic lattice.
The atomic cell for this lattice is shown in Fig. 7. The parallel square
faces are located on planes %, vy, or z = -+ a/2 (a is the lattice parameter)
while the hexagonal faces have normal vectors (a/4) (+ 1, + 1, 4- 1).
Hence, the translation T is of the type (a, 0, 0) for points on the square
faces and (2/2) (1, 1, 1) for the hexagonal faces. First let us consider
states pertaining to the center of the Brillouin zone: k = 0. From (2.71)
o(A) = p(B): such functions are said to be periodic with the periods
of all pairs of parallel face of the cell. We will discuss in detail only the
case in which ¢ belongs to the I'j representation and is unchanged by any
operation of the full cubic group. Then consider the function at a point
close to a square face of the cell, say (32 + ¢, ¥, 2). If this corresponds
to A, then B=(— 44 + ¢, y,2). Hence

lﬁ(%d +&y, Z) = ‘/’('— %d +¢ Y, Z)

However, the operation (— x, y, 2) leaves ¢ unaltered. Hence

i,b(%d + & y,Z) = ¢'(%a —¢, y,Z)
We conclude that the normal derivative of this function vanishes on the
square faces. A similar argument shows that the normal derivative also
vanishes at the center of a hexagonal face, and along certain lines in this
face (but not everywhere): Let (x, y, 2) be the coordinates of a point on
a hexagonal face. Then, on applying the lattice translation (— }a, — 3a,
— }a) followed by the operation (— y, — x, — z) we find

P(x,9,2) =d(x —3a,y — da,2 — ko) = $(§a — ¥, 4a — %, ja — 2)

But (3 2 — y, 3¢ — x, a — 2) are the coordinates of a point in the same
hexagonal face which is symmetrically situated across the line { =0
illustrated in Fig. 7. Again, considering a point close to (#, y, z) displaced
along the normal to the face by an infinitesimal amount, we have

¢(x+£’y+812+8) Zlﬁ(%a—y—s,%a—x—s,%a—z—e)
We conclude that the function ¢ is symmetric about the line { = 0 and
the normal derivative is antisymmetric about this line.
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Boundary conditions may be deduced in a similar manner for functions
belonging to other representations. At the point H = (2n/a) (1, 0, 0)
the wave function is periodic with the periods of pairs of square faces,
but is antiperiodic with periods of pairs of hexagonal faces. For the
representation H,, this implies that, while the normal derivative still
vanishes on the square faces, the wave function itself must vanish at the
center of a hexagonal face and on the lines { = 0. The normal derivative
on the hexagonal face is symmetric about the line { = 0.

The complexity of the boundary conditions should be evident from
this discussion. A standard procedure has been to satisfy the boundary
conditions at a small number of selected points — one additional point for
each radial function in the expansion (2.69). This procedure does not,
however, converge readily (Howarth and Jones 1952). Further, for a
general potential, it is not clear whether the expansion (2.69) of the
wave functions converges in the region outside of the largest sphere
which can be inscribed in the atomic cell, since the potential will not
be spherically symmetric in this region (Ham, 1954, 1960).

A simple approximation which may be used for a few interesting
states is the following: For the purpose of satisfying the boundary condi-
tions, the polyhedral cell is replaced by the sphere of equal volume
(spherical approximation). Under these circumstances only a single
term is required in (2.69) for states at k = 0. Functions of even [ are
then periodic in the crystal and even under inversion; hence these must
have vanishing radial derivative on the sphere. Functions of odd / must
vanish on the sphere. These simplified boundary conditions are reasonably
accurate only for states near the bottom of a simple s band. In this
approximation the actual crystal structure is irrelevant; only the volume
of the cell is important.

2.7 The Eftective Mass

An interesting and important application of the cellular method is
involved in the determination of effective masses and wave functions for
states near the bottom of the lowest valence electron band in a cubic
structure (Bardeen, 1938a). The procedure used here is that of Silverman
(1952), and differs from that of Section 1.7 in that, here, the differential
equation of first order perturbation theory is solved, subject to the
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boundary conditions imposed by the spherical approximation to the
cellular method. A variational principle for the determination of the
components of the effective mass tensor at any point in the Brillouin
zone has been given by Cohen and Ham (1960).

The wave function of a state near the bottom of the band (which is
assumed to be at k = 0) is written in the Bloch form. All indices other
than the wave vector are suppressed, and spin-orbit coupling is neglected.

l/'k — eik-ruk

It is found by substitution in the Schrédinger equation that the function
u,, satisfies the differential equation (atomic units)

(— V24 Vug — 2k - Vg = (E(K) — k2 (2.72)

We express u, as a power series in k; the coefficients are functions of
position which have to be determined:

ux(t) = ) un(t)kr (2.73a)
n=20

Since #, is periodic in the atomic cell, the boundary conditions for it are
the same as for a wave function of k = 0.
The energy is also expanded in powers of k:

E(k) = D Esu i (2.73b)
n=>0

Odd powers of & are absent in (2.73b) because E(k) has inversion sym-
metry; on account of the spherical boundary conditions terms possessing
cubic symmetry, rather than spherical symmetry [such as a possible
E®(E2E24+R2R2+E2EE— $EY], will not appear.  When
Eqgs. (2.73a) and (2.73b) are substituted into (2.72), and coefficients of
like powers of % are equated to zero, a set of equations is obtained for
the functions #,. They are:

(— P2+ V — EQug=0 (2.74a)

(— V24 V — Egu, = 26k + P, (2.74b)
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(— P24V — Eg)uy, = 2ik - Vuy + (E, — 1)u, (2.74c)
(— P2+ V — Eg)tty = 2k + Vity 1+ (Ey — Vtty—5 + Egthn_s+ ...
(2.74d)

In Eqgs. (2.74), k is a unit vector in the direction of k. It is assumed
that the solution of (2.74a) is known (subject to the boundary condition
(dug/dr) r=r, =0, where 7, is the radius of the sphere of equal volume).

It is possible to determine solutions of the remaining equations by

inspection. The particular integral of (2.74b) can be seen to be — 7k - ru,,
Evidently #, is an odd function; and thus must satisfy the boundary
condition #;(r) = 0. This may be accomplished by adding a multiple
of a p(! = 1) solution, whose radial part is denoted by f,, of the homoge-
neous equation [obtained by dropping the right side of (2.74b)]. Then

uy = ik P[(for) — ug] (2.75)
Similarly, it may be verified that a particular solution of (2.74c)is
— ik ruy, + (k- r)2u, + Ey g
where g satisfies
(— V24V — Eyg =u, (2.76a)

A function g which satisfies (2.76a) may be formally determined by
differentiating the equation (— V2 + V — E)uy(E, r) = 0 with respect
to E and setting E = E:

ou,
(—V2+V —Ey) a—E" = 1, (2.76Db)
The function %, is even under inversion. It must, consequently, satisfy
the condition (du,/ c’ir),s = 0. In order to satisfy this condition it is first
necessary to separate it into s and 4 functions. This may be done with
the use of the identity cos? § = $P, + %, where P, is the second Legendre

polynomial. Then we may write

0
y = (3rfp — r o + cafd) Py + (m — U+ B2t uo) 2.77)
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The function f; is the radial part of the d solution of the homogeneous
equation. If we differentiate the multiplier of P, with respect to 7, the
boundary condition determines c,

d df\ !
wmin22) (%) -

However, the boundary condition on the s part of #, cannot be satisfied
by a choice of ¢, since (du,/ dr), 1s already zero. Also 9uy/0E is uniquely

determined by the condition that #y(E, 7) be normalized for all energies: If

juf(E, 7)d3 =1
I

then

ouy

20 73y —

Suo 3E adr=20 (2.79)
o

Hence we may set ¢, = 0, since its only role is to “‘renormalize” #, Thus

we see that the boundary condition on #, in fact determines E,: we have

. d/p azuo -1
Ey— — 13 (W)’s (E?E“ " (2.80)

The quantity (8%u,/or 0E)s £, can be determined from (2-76b) with the
aid of Green’s theorem. We multiply both sides of (2-76b) by #,, integrate
over the cell volume, and apply Green’s theorem:

%y gs, :Sa“" [— P2+ V — EJugd®r +  (2.81)

2

Q

uy \ ([ Ou, 0%u, _ 2 13,
H(W)(a}z) “O(ar 0 )y, | 4= | Mot B =1

In (2.81), ds is the element of area, and the second integral on the right
side is taken over the surface of the sphere of equal volume. It is convenient
to define the function #, and its derivatives so that the integral over all
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solid angles is unity (this may be done by including a normalized spherical
harmonic Y,? = (47)~"/2 in the definition). With the use of (2.74a) and
the boundary conditions, we obtain

o%u, 1
= — 2.82
( dr OF ),S, E, 752 ug(7s) (282)

Then (2.80) may be re-expressed as

753 up(rs) s df
B 0 (%), .

(Here we have used 7, #,(r;) = f,(r,).) If we introduce the functions
Ry =ruy, P = rfp, which are the ones usually calculated, we have

7R (7 4P
Ey =3 [P ! (2.84)

The expression for ¢; may also be converted into a more convenient
form

2F, (dfs\"*
a=— 7s Ro(zrs) (7), (2.85)

Silverman has continued this procedure through the calculation of E,.
His result is:

2 4 E2 v dfg\ !
E,=—-7r2E _ -2 L2 e )
1= Ey— g v 7s (fd dr) + (2.86)
vEy | Ey(0uy — oy uy(7s) JO HEg, 7) d
uo(rs) | y \9E 76 Eq PO PA(E,, 75)
where
1 v ug(rs) [ 02y \ 1

and

J¢ PXEyr)dr  d [1 dP]
E,z,

P2E,r) dE|P dr (2:88)
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An important property of these formulas is that, in spite of first appear-
ances, they are independent of the normalization of the wave function,
and depend in fact only on logarithmic derivatives of the functions on
the surface of the atomic sphere. In particular, using the relation
1p(rs) = 7 uy(r,) Eq. (2.80) can be put into a form explicitly independent
of the normalization:

S 2%, \7!
E2 = 3 fP<VS) (—dr_),s u«o(rs) (—ar oE o Eo (2893.)

It is convenient to introduce the notation

s (d , d o9

Then (2.892) becomes

E 2 = ﬁi ¢1/

3 4o

and Brooks has shown (Brooks, 1958) that E, can be expressed in the
normalization independent form:

(2.89D)

E — 27t 4’1 1 2 4”1 5 ¢1 i‘ﬁo" ¢’1

15 4y 3¢y 6 12 (4)°
Finally, it is interesting to note that this procedure can be carried
through for the Dirac equation which describes the (relativistic) motion
of one electron in the periodic potential, V' (Callaway et al., 1957). Rel-
ativistic effects can be important in solid state physics because the
valence electron penetrates the core into a region where the electrostatic
potential is very strong. The effective mass in this case is determined
from an expression similar to (2.84) which contains in place of the single
function P the large component radial wave functions for the p states of
] = 3$(Pyp) and § = }(P;p). The function R, goes over to the similar
large component of the 7 = §, s state function (R,,)

(2.91)

= —1 .
E2 3 P3/2 ar 3P1/2 ar I3 (2 92)

s

7o Rip [ 2 7, dPyp 7o dPyp
3
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2.8 Variational Methods

There have been a number of attempts to avoid the difficulties involved
with point matching of boundary conditions in the cellular method
(Kohn, 1952; Howarth and Jones, 1952; Ham, 1954; Altmann, 1958a, b).
One of the most interesting of these approaches is the variational method
of Kohn and Rostoker (see Kohn and Rostoker, 1954; Ham and Segall,
1961; see also Korringa, 1947). We will examine this procedure in some
detail:

Consider the Schrédinger equation in the form

(H—Ey=0, with H=—V2t+V.

The customary variational principle for this problem is
0l =0 where I= Ex//*(H —E)d¥r=0 (2.93)

The integral in (2.93) is to be evaluated in an atomic cell. Suppose
we make an arbitrary variation of ¢ by replacing  in (2.93) by i, where
' = ¢ + & and i satisfies both the Schrodinger equation and the
boundary condition. We find with the use of Green’s theorem.

oI = S (0 V¥ — *V &) - ds (2.94)

The integral here goes over the surface of the atomic cell. The quantity,
éI, will vanish in general only if di obeys the correct boundary condi-
tions prescribed by Bloch’s theorem (for then the contributions from
conjugate points on the cell boundary will cancelf). It is possible to find
a different functional which does vanish for arbitrary variations of
(Kohn, 1952).

The variational principle used by Kohn and Rostoker is based on
an integral equation which is equivalent to the Schrédinger equation:
To determine the energy of states at a particular point k inside the
Brillouin zone, we find the Green’s function which satisfies the equation

(V2 + E)Gy(r — ') = 0(r — 1) (2.95)

¢ Conjugate points are pairs of points separated by a lattice translation vector.
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subject to the boundary conditions required by Bloch’s theorem

Gx(r + Ry) = & BrGy(r) (2.96)

(As usual, R, is any lattice translation vector.)

The standard technique for calculating Green’s functions involves
expansion in eigenfunctions of the homogeneous equation which satisfy
the appropriate boundary conditions. In general, if the eigenfunctions
of I? are distinguished by an index j (eigenvalues are E;), we have
(Goertzel and Tralli, 1960)

6. x) = — 3 ) g 0 (2.97)

In the present case,

1 stk
¢7(r) = Qollg ( nl T

(2.98)

where K, is any translation vector in the reciprocal lattice, and £, is
the volume of the atomic cell. Then

1 SR+ (1)

?(,K k+K,)2—E

n

Gk(r —1') = — (2.99)

If we operate on G(r, ') with (V2 + E), it will be verified that (2.95) is
satisfied since, according to the closure property of the eigenfunctions,

ei(k +K,)-(r—1r')
2 = Y —— = —T)
. 0
7 K,
In addition G(r — r’) has the properties
G —r1) =G*r—7r) (2.100a)
and
Gr+Ry—1) =G —r) (2.100b)

The Schroédinger equation may be put in the form

(V% + E)ibi(r) = Vif(r) (2.101)
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A formal solution is

h(r) = SGk(r — )V () (r) 4% (2.102)

2

This equation may be verified by direct substitution into (2.101). The
energy value F is involved in the integral equation through its appearance
in the expression for the Green’s function. That i, satisfies the proper
boundary conditions is guaranteed by Eq. (2.100b).
The integral equation (2.102) may be derived from the variational
principle
61 =0 (2.103)

where

j Y*(r)V(r)ip(r) a3 — H Y*()V()Gx(t — )V () (r') d3' d3  (2.104)
ferey
This variational principle has the important property that 4 vanishes
in first order for all variations from the solution of (2.102) regardless of
whether or not the variations satisfy the boundary conditions. Further,
for the exact solution of the problem

A@pk, E) =0 (2.105)

If an approximate A is computed from some trial function i, and
Eq. (2.105) is solved for the energy, the error in the energy is of second
order compared to that of the trial function.

A convenient method of employing the variational principle is to
choose a trial function which is a linear combination of a finite number of
basis functions with undetermined coefficients

N
= O Cox pox (2.106)

Let us define a set of quantities 4,

A= jtﬁnk(r )P (r) — H ¢nk @)Gi(r — ')V (r') b (r') d37 A3
(2.107)
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An approximate A is

N

A= D ChAu Cix (2.108)

n,l

The stationary condition on A requires that the partial derivatives of A
with respect to the coefficients C vanish, or that, for each »

D A Ci=0 (2.109)
1

A set of N linear homogeneous equations is obtained. The condition for
a nontrivial solution is that

det Ay =0 (2.110)

This equation may be used to determine the energy for a state of given k
{or the wave vector k for which the wave function will have a prescribed
energy). If the functions ¢, belong to a complete set, the energy obtained
will approach the correct energy as the number of functions increase.

In the simple case in which the ¢,, are plane waves
bare = 2,712 gk Kyx

the A4,, have the form:

B V(K — Ko V(K — K)
Au="V +Z Ry —F @.111)

One might wish to use (2.110) with (2.111) in place of the plane wave
method previously discussed, but in general the sum in the second term
of (2.111) would be quite difficult to evaluate.

The possibilities of practical application of the Kohn-Rostoker
method are limited by the difficulty in evaluating the second term in
Eq. (2.107). It is possible to bring this principle to the aid of the cellular
method, however, if one may assume that the potential in an atomic cell
is constant outside of the inscribed sphere (radius ;). By proper choice
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of the zero of energy, the potential may be made to vanish outside this
sphere

Vir)=0 for r=v (2.112)

Physical potentials will not have this property; it is hoped that not too
much violence is done to whatever real problem is being studied by this
approximation.

It is then convenient to take a trial function of a form similar to
(2.69):

Uit = D) Cicim Yin(0, $)RUE, 7) (2.113)

Lm

in which the radial function R, satisfied the radial equation (2.70). Then
., satisfies the Schrédinger equation (energy E) for » <7,

V2+ Eli,e = Vi for r<r (2.114)

However, the coefficients Cy ,,, have not yet been determined so that
the boundary conditions may be approximately satisfied.

In accord with (2.110), it is now necessary to determine the “matrix
elements” of A, which are to be constructed using functions R,()Y,,.(0, ¢)
as a basis. This derivation is quite lengthy, and will not be presented in
complete detail here. For a more complete treatment, the interested
reader should consult the paper of Kohn and Rostoker.

The restriction to potentials which vanish outside of an inscribed
sphere makes possible the conversion of the expression (2.104) for A
to a form which does not depend explicitly on the potential but involves
surface integrals over the inscribed sphere. Some care has to be employed
in the procedure because the Green'’s function is singular when its argument
is zero. It is desirable to consider a sphere whose radius is slightly smaller
than that of the inscribed sphere; 7, — . Later, we shall let ¢ — 0. First
we observe that, on account of (2.114)

jG(r — V()W) &3 = gc(r — 1) (72 + E)(r') d%'

The operator V' differentiates functions with respect to coordinates r’.
Green’s theorem enables us to write
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SG(r —r) (V' 2+ E)(r)d¥' = E(V’z + E)G(r — r')(r") a3’ (2.115)

+ 5 [Gr — ) V'(r") — ()W G(xr — 1')] - a8’

— () + H [G(r—r') W) e aG(r'r')]ds'

or o
Thus
p(r) — EG(r — )V (' )(r') @’ (2.116)
_ 5 [G(r—r’) W ey 2 ")} as’

r:

,L—S

The volume integrals in this equation include the interior of the sphere of
radius 7; — ¢; the surface integrals pertain to the surface of this sphere.
If we let ¢ -0, we find from (2.116) that for potentials which vanish
beyond the inscribed sphere the basic integral equation (2.102) reduces to

HG(I’ —r) %a(:i — () aG(%r') ds' =0 (2.117)

£

We return to the determination of A from Eq. (2.104). Since there
are two integrations, a second sphere of slightly smaller radius, which
is taken to be »; — 2¢, is also required. Then, by an argument similar
to that leading to (2.116), we have for »' < 7:

glﬁ*(r)V(r)G(r —r)d¥% = j (V2+ EYW*G(r —1') d% (2.118)

u

oy N GE—T)
- E[ar G(r—r) — 3 — ds

r;— 2e

The expressions (2.116) and (2.118) are substituted into (2.104)
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= Sgb*(r) I (r) [ } (r— 1)V ()h(r') ds’ ]dﬁ‘r (2.119)
o]

- _ V*(r)V(r){ j {G(r—r’) . ) aG(ra,_r)}dSJd3r

K ds'[L”*‘r’~¢*5a;H¢(r')Zf )~ Gr—1) a‘ba(,,"}

o
P
5’?

[Q
wn

In order to compute the “matrix elements” of A, we replace ¢* in (2.119)
by R, Y5..(6, $) and 4 by R, Y,,(0, #). It is then necessary to express
the Green’s function (2.99) in terms of spherical waves. This may be
done with the use of the expansion for plane waves

eX T — an S (KN Yin(0, 4)Yin* Ok, $K) (2.120)

L,m

In (2.120) 6, ¢ and Ok, éx are the polar angles of r and K, respectively,
with respect to a fixed set of axes. Then we find

) = (47)2 - y 11| Ko +k\r],; (K, + k') )
Gr—r)== "5 12’2 K1 —F (2.121)

Uom!
Ym0, §) Y60, )Y im0k, %) Y e (Ok, HK)

The angles 6, ¢’ and Oy, ¢x now refer to the vectors r’ and (K, + k),
respectively.

Equation (2.121) is not, however, a convenient form of the Green’s
function. Within one atomic cell, it must be possible to express the
Green’s function as the sum of two parts: one which is a particular
integral of (2.95) and hence singular for » = #’; the other part a solution
of the homogeneous equation, regular for » = 7'.

It can easily be verified that a singular solution of (2.95), valid within
the inscribed sphere, is given by

1 cos (k|r —r'|)

Golt — 1) = — v (2.122)
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with 2 = E. The expansion of this function in spherical waves is,

ke X k) mlicr) Yim(B, $) Yol 6, ') for 7 <7

Go(r —1') = b

ke X ik yu(kr) Y o0, 8) Yim(0, ) for  r>7

1,m
(2.123)

In this equation #; is the spherical Bessel function of the second kind,
singular for zero values of its argument?’

m(x) = (7/22)V2 ] _1_1p2(%)

The regular part of G(r — ') must have the form:

2D D A it Yok ) Y im(0, )Y i (0, ') (2.124)

Im  Vm'

in which the 4,,, ,,,, are constants to be determined so that the boundary
conditions are satisfied. (This function is seen to be regular; it is easily
shown to be a solution of the homogeneous equation.) Hence we can
write for » > 7' < 7;:

G —r) =" i im islkr)is(scr’) + (2.125)
Lm U'm'
1 Ot O 1167V 4(07”) 1Y 1 (0, B) Yo (67, B')

The coefficients 4,,,,, may be deduced by comparison with (2.121)
and (2.125)

7 The expansion (2.123) for G, may be deduced from the more familiar expansion

1 ix|r — 1’|
‘ =k D) ik Im(ir’) — iis(icr) ] Yim(6, §) Yim(0, ¢)  for v <’

T in [r — r'| ;
,m

by identifying real and imaginary parts. A similar expression with » and 7’ inter-
changed is valid for » > #’.
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(4
0,

0

i) (o)) 171 (2.126)

Alm,l'm’ = -

% 2 71| Ko + K|r)jv (| K, + k|7')thn(3K, ¢K) Ym0k, PK)
K, TK?—E

”n

K(Su/ 5mmr " (K?")
i(ke?)

(r<r<r)

The right side of (2.126) must be independent of the values of » and 7'.
Kohn has given, fortunately, expressions for the A which are
simpler to evaluate. These will not be discussed here.

Im,'m/

We must now return to Eq. (2.119) to evaluate the quantities
Ay 11ys Wwhich are “‘matrix elements of A” computed with basis func-
tions R, Y, (0,4). Equation (2.125) is substituted and the integrals
over the spheres are performed using the orthonormality of the spherical
harmonics. The result is, in the limit ¢ — 0:

/llm, Um! — Rl Rl/ [Ll ].1 — ].l’:} [(Alm,l’m’ 71,’ + K(Sll’ nl’,) (2127)
- (Alm,l'm' 7.1’ —+ kO Omm? nl’)Ll’J

. ., . v mL,—mn
= — Ry Ry[Liji — ¢ ) [Ly jir — 1] [Azm,ym, + B s 7
ki —n
In (2.127),
1 dR ., du(Kr) .
L= R dr her W= - etc. (2.128)

and all functions are evaluated at 7.

The determinantal equation (2.110) may now be constructed, and
simplified by division of the common factors — R, [L;7, —j,’] from
each row and Ry, [L, j;, — 7, ] from each column. The resulting equation,

%1, — "y Ll
Alm,l'm’ + Kall’ amm’ ) >

det -
71— Ly

=0 (2.129)

gives the required connection between E and k.
The utility of this procedure for energy level calculations is seen to
depend on the following two principal factors:
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1. The availability of the “structure constants” 4,,, s, as functions
of energy and k for the different lattices. Some computations of these
quantities have been made by Ham and Segall (1961).

2. The adequacy of the approximation in which the potential in an
atomic cell is constant outside the inscribed sphere.

It is, of course, necessary to determine the logarithmic derivative of the
radial functions as functions of energy on the inscribed sphere. This is
done with reasonable ease by numerical integration of the radial equation.
However, these quantities may also be determined, at least for the alkali
metals, by extrapolation from spectroscopic data pertaining to the free
atom. This procedure will be discussed in Section 2.14.

The Kohn-Rostoker method has been applied extensively to energy
level calculations in the alkali metals by Ham (1960). Some of the results
of these calculations will be discussed in Section 3.3.

2.9 The Augmented Plane Wave Method

The fundamental reason for the difficulty of energy band calculations
is that the only functions which satisfy the boundary conditions imposed
by Bloch’s theorem in a simple manner are plane waves, but plane wave
expansions do not converge readily in the interior of an atomic cell. To
get around this difficulty Slater proposed (1937) to expand the wave
function in a set of functions composed of plane waves in the outer regions
of the atomic cell, and a sum of spherical waves in the interior.# Let us
consider such a function

P = age(r — 1) X T+ > ape(ri— 1) Yy m(0, $)RIE, 7 (2.130)
ILm
The function ¢ is a unit step function
gx) =1 for x>0 (2.131)

e(x) =0 for x<0

8 The method has been developed further by several authors: see Slater (1953a),
Saffern and Slater (1953), Howarth (1955), Leigh (1956), Schlosser (1960).
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This plane wave is joined to the spherical waves on a sphere whose radius
is 7; (usually, this sphere is the inscribed sphere). It is convenient to
choose the coefficients 4, so that the function @, is continuous across
the sphere. To do this, we expand the plane wave in spherical harmonics
according to (2.120). Then we find that

tim = 471 ay ¥ (O, i) JI%I((]?E:)) (2.132)
Although ¢, is continuous across the sphere, its normal derivative is
discontinuous. A plane wave in general cannot be joined smoothly onto
spherical waves in the interior of some region: there must be scattered
waves as well.

The function R)(E, ) is a solution of the radial equation (2.70) for
some energy. There are two ways in which this energy E may be chosen.
In the first paper by Slater (1937) on this topic, the energy E is left
undetermined at this stage; it is later set equal to the energy resulting
as the solution of the problem of diagonalizing the matrix of the
Hamiltonian on the basis of augmented plane waves. In the subsequent
work of Saffern and Slater (1953) whose point of view will be adopted
here, the energy E is set equal to the expectation value of the energy of
the single augmented plane wave (2.130). In both cases, the potential
is required to vanish beyond the inscribed sphere. This restriction is not,
however, essential to the APW method.

Some care is required in the computation of the average energy on
account of the discontinuity in the derivative of the function on the
inscribed sphere. Let %(r) be a continuous function which has a dis-
continuous gradient on a sphere (r| = #;), and let % and w, represent
the function inside and outside the surface of discontinuity, respectively.
We can write

Vi = Vi, + (Vo — Vus)e(r — 7))
The Laplacian of » has a delta function singularity for » = 7,, whose
strength is given by the discontinuity in. the normal derivative. The

integral of the Laplacian through an arbitrarily small volume containing
the surface of discontinuity is: (ds lies along the outgoing normal)

ju* V2uddr = gu* WVuo — Vu;] - ds
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Hence, the volume integral of the Laplacian through the atomic cell is

Sui* V2 u; d3r —}-juo* l72uod3r—+—!‘uo* Vo - ds —Sui* Vu; - ds

The surface integrals cover the sphere on which the discontinuity occurs.

Since #, is a plane wave in this case, the third integral vanishes,
and the second integral may be transformed by Green’s theorem so that
we have

Su* Hud3 = Sui* Hu; d3r 4+ Eui* Vu;-ds + E (Vuo)* - Vu,d® (2.133)

where w is the volume of the atomic cell outside the inscribed sphere.
The radial function R, is normalized to unity inside the inscribed sphere.
Then from (2.133)

S‘I’k*(— V2 4 V)®yd% = k% ag|2w + E D, |aim|? + surface term (2.134)

im

The normalization condition on @, requires that

g@k*q)k @ =1=|agtw+ D |am? (2.135)

Im

The surface term has the value [from (2.133)]

7 2|a,,,42( ’) Ri(r.) (2.136)

We substitute g, from Eq. (2.132) into (2.136). The sum on m may be
performed with the use of the addition theorem for spherical harmonics

2l+ 1)

2 Ylm (O, ¢>k') Yim(Ok ¢k P(cos Oxx’) (2.137)

where 0y, is the angle between k and k’. Then (2.136) becomes (since
k =k’ in this case)

. : 1 4R,
d707:2|ay|? IZ’ (20 + 1)j;2(kn) (E 7){ (2.138)
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We identify the integral on the left-hand side of (2.134) with E according
to the previous discussion. We then combine (2.134), (2.135), and (2.138)
to obtain

1

(E — K)o = dar2 > (20 + 1)j,2(hr,) (dir In Ry(E, r)>’ (2.139)
1

This equation gives the connection between E and k for a single augmented
plane wave.® The energy is actually a multivalued function of k2: This
occurs because the logarithmic derivative of each radial function R varies
from + oo to — oo (the slope of the logarithmic derivative as a function
of energy is always negative, much like a cotangent curve) as the energy
increases, being singular when a node of the radial function passes through
the inscribed sphere. It may be hoped that the APW of lowest energy
will be a good approximation for states of small k, at least in simple
metals.

It is now necessary to compute the matrix elements of the Hamiltonian,
and of unity between augmented plane waves. The formulas may be
simplified considerably through the use of the following result: Consider
the integral throughout the inscribed sphere of products of radial func-
tions R,(E,7), belonging to different energies: We define the quantity
I,(E,, E;) through the equation

£

J[R,(El, )Ry(Ey, )2 dr = I|(Ey, E))R(E,, r)Ri(Ey, 7:)  (2.140)

0

The integral may be computed in the following manner: The functions
P, = 7R, satisfy the equations

2
@ p(E,7) + [El B ) J PUE,7) — 0 (2.141a)
ar 4

2
%P,(Ez, ” + [E2 _y_ % ;‘; 1)} PUEy7) = 0 (2.141Db)

9 If the potential is constant but does not vanish beyond the inscribed sphere,
we add tn k2 in (2.139) the quantity V(0}, which is the average of the potential in
this region.
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Equation (2.141a) is multiplied by P,(E,, 7); Eq. (2.141b) is multiplied
by P,(E,, 7), and the equations are subtracted. We have, upon integration

'CE-El7

2

7’,‘2 d d ¢
I(E,, E, —In R(Ey, 1) — = InRy(Ey,7) | (2.142)

In the limit E, — E;, we evidently obtain the useful result that:

£

0
S RAE, rrdr — — 12 RA(E, ) 5= [% In Ry(E, r)] (2.143)

Since the left-hand side of (2.143) is always positive, the statement which
was made previously that the slope of the logarithmic derivative as a
function of energy is always negative has been proved.

The matrix element of unity between two augmented plane waves
(or in other terms, the overlap integral between them) may now be
computed. We will designate this quantity by (k; E1|k2 E,). It is only
necessary 'to consider waves such that k; — k, is a reciprocal lattice
vector in the computation of matrix elements. The integral involves
two parts; one coming from the plane wave outside the sphere; the other
from the spherical waves in the interior. The former may be written

y.:

%

S B Sei(kl—kZ).r = QO 6k1k:_ 4”5

cell sphere

sin [k, — K7
— =524y 2.144
k; — K, ( )

7.1(|k1 _ kz"'i)
— 4 2
= 4 i, x, T i Ik, 2!

= w0k, k, — 477;

The second contribution is

D aim(ky, E)aim(ky, E)L(Ey, E)Ri(Ey, 7)) Ri(Eg, i) (2.145)

I,m

The sum over m may be performed with the aid of the addition theorem
(2.137). When the contributions (2.144) and (2.145) are combined, the
result is
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(k& — Ky |7
(ky Ey[ky Ep) = o Oxyx, — 4””1'2% (1 — dx,x,) (2.146)
17 K

+dn D) (204 1)jilky )iy 7)) Pifcos B, k) Ii(Ey, Ey)

1

The matrix element of the Hamiltonian between two.augmented plane
waves is denoted by (k, E,|H|k; E,). It may be computed according
to a procedure similar to that used in the calculation of the average of
the energy. From (2.133) we have

(&, E,|H|k, E,) = E Dy Hdy, d%r (2.147)

2
= Suﬁ(— Ve + VYug, d3r + Eu{: Vuo; - ds 4- j (V10)* « Vg, d3r
The first term on the right of (2.147) may be expressed as

Ey D ai (Ky, E)am(ky, Ey)Ii(E;, Ey) RiEy, 73) Ri(E,, 1)
im

The surface term becomes

dR
72 ) arm &y, Ey)aim(Ky, Ey) [&(El,r) L EL|,
I,m i
The plane wave part is just
ki -ky |— | ea—k)rgsy

cell sphere

When these contributions are combined, the result is

(ke — Ky |7;
(ki E\|H|ky E;) = Ky - K,y {w Ok, ey — 47"»'2M (1— 5k,,k,)J
[k, — k,|7:

+ dar D7 (20 + L)julky 7)alky 7)) Pi(cos Bk,x,)  (2.148)
1

=r;

1 a a
X ﬁ [El Eln R[(Ez, 7’) — E2 a—r In RI(EI: r)]r
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It should be noted that the energy and overlap matrix elements both
vanish in the case in which %, = &, but E, # E,, provided that (2.139)
is satisfied

(kl E1|k1 E2> =0 (Ey+# Ez)
(&, E1|H|k1 Ey))=0 (Ey # Ey) (2.149)

This shows that the augmented plane waves used to represent electrons
in the bands of interest for solid state problems are orthogonal to those
of core states. Consequently an expansion in augmented plane waves will
converge to the required state in the chosen band.

In the application of the augmented plane wave method, it is desirable,
as in the case of orthogonalized plane wave expansions, to form sym-
metrized linear combinations of augmented plane waves whose wave
vectors are connected by operations of the group of the wave vector for
the particular point in the zone under investigation. The coefficients in
the symmetrized combination of augmented plane waves must be the
same as those in the combinations previously discussed in Section 2.2.
The spherical harmonics participating in the spherical wave portion must
also combine to form the appropriate Kubic harmonics, since only these
functions can satisfy the correct boundary conditions on the inscribed
sphere.

The augmented plane wave method is evidently a most difficult one,
and with one exception (Chodorow, 1939) calculations based on this
method have utilized modern electronic computing equipment. The
method has been applied to copper by Howarth (1955), to iron by Wood
(1960, 1962), and to lithium and sodium by Schlosser (1960). The conver-
gence of the method is asserted to be quite rapid. The APW method is
similar to the Kohn-Rostoker approach in that it requires both knowledge
of the logarithmic derivative of the wave function on the inscribed sphere
as a function of energy and a truncation of the potential at the sphere.
(The latter requirement, while present in Slater’s formulation of the APW
method, is not essential.) Further, since only a finite and reasonably small
number of spherical waves can, in practice, be included in an APW, the
wave function itself actually is discontinuous on the inscribed sphere. Leigh
(1956) and Schlosser (1960) have given variational formulations of the
APW method which take account of this feature.
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2.10 The Tight Binding Approximation

The methods of calculating energy levels which have been discussed
previously have a reasonable claim to exactness in that the expansions
employed will, in principle, converge to the state of interest as more
functions are added. At the same time the calculations are generally
quite difficult to perform except at points of high symmetry in the
Brillouin zone. The tight binding approximation, in its usual formulation,
does not lead to an exact solution of the one-electron Schrédinger equation
since wave functions belonging to bound atomic states do not form a
complete set of functions. It does provide a reasonably simple technique
of approximating the energy of states at general points of the zone.

We saw in Section 2.4, in the discussion of the wave function of core
states in connection with OPW method, that a Bloch function ¢,, based
on the free-atom wave function u(r)

b= VINZ T — R,)

has the periodicity required for a state of wave vector k. In the limit
of very large atomic separation, these functions would be exact one-
electron wave functions. One may suppose that in the case of finite but
large atomic separations these functions still are good approximations.

In the case of a nondegenerate atomic level (s-state), the problem
is to find the average energy of the function ¢, above. The Hamiltonian
contains a sum of potentials centered on each atom

H=Hyr) + > Vir—R,), (2.150)

v#0

in which Hy(r) = — V2 + V(r).

We suppose that # satisfies
Hyu(r) = Equ(r)

The functions #(r — R,) on a given site are normalized. Then
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S(}Sk* He¢ypd¥ =N—1 Z e R””)E u*(r — R,)

v, v’

Hy+ D' Vit —R, ] w(r — R,) d3

_ N [Eo X | e Rt — R v

v, v

I 5 WHE— RV ( — RoJu(r — Ryr) d

v, v, vt
v/ v/

This expression can be simplified. Since the summations run over the
entire crystal, one index (say ') can be set equal to zero and the (1/N)
multiplier deleted. Then

Sg{)k Héy d3r = E, [1 + D) &R S w*(r — R,)u(r) 437] (2.151)

v#0

+ DR Eu* (r — R,)V(r — R,)u(r) d%
V%o

The functions ¢, are not normalized. In order to compute the average
energy, (Ey), of ¢,, it is necessary to divide Eq. (2.151) by the integral

quk* budd = (N-1) D' e M Rv"S w*(r — R)u(r — R,) d% (2.152)

v, v

=14 e ER ju* (r — R,)u(r) d%
v#0
Hence
Z e [y — R,V (r — Ry)u(r) d3r

[ Hbudr o o |
Jéu* i d®r ’ 14+ Z e B u*(r — R,)u(r) d¥

v#0

E(k) =

(2.153)
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In general, Eq. (2.153) is quite difficult to evaluate on account of the
presence of three center integrals in the numerator. A common, but not
always valid, approximation is to neglect these altogether (two center
approximation): We then have:

E(k) = E, + (2.154)

Zflu@PEVE—R) @ + e ™ [ur(x — R,)V(r — R,)u(r) &%)

v#0

14 Ze ™™ [ux(r — R,)u(r) d¥
v#0
For an S state wave function, the integrals in (2.154) cannot depend on
the direction of R, (provided that the potential on any site is spherically
symmetric). It is then convenient to define quantities S, J, K:

the “overlap integral” S(R,)) = iu*(r — R,)u(r) d3 (2.155a)
the “interaction integral” J(R)) = gu*(r —R,)V(r — R,)u(r) d3
(2.155b)

5 u*(r)V(r)u(r — R,) d3

the “crystal field integral” K= ZS fu(r)2 V(r — R,) d3
y20
(2.155¢)
Then

K +2”](‘Rv|) e—ik-Rv

: 2.156
1 _}_Zve—%k-R’,Squ') ( )

E(k) = Ey+

Let us consider a hypothetical simple cubic crystal of lattice parameter
a and include all terms through third neighbors. We find that
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Z e HR 2([cos k,a + cos kya + cos k, a]

100
positions

7 —ik-R
Z e " *=4[cosk,acoskya -+ coskyacosk,a-+ coskyacosk;a]

110
positions

_ik-R
2 e """ =8cosk,acoskyacosk,a

111
positions

Equation (2.156) may now be written explicitly as:
E=E,+ [K+2](a)(cosk.a + coskya + cos k,a) +
4](]/5{/1) (cos kyacoskya + coskyacosk,a—+ cosk,acosk,a) +
8](V§_a) (coskyacoskyacosk,a)] [1+ 25(a) (cos kya + cos kya +
cos k, a) + 4S(V§a) (cos kyacoskya—+ coskyacosk,a-+ cosk,acosk,a) +
85(V§a) (cos &, a cos kyacosk,a)]~! (2.157)

Equation (2.157), which gives the energy as a function of wave vector for
a single cubic lattice, may be adapted to other cubic structures (e.g., body-
centered or face-centered cubic) simply by adjusting the lattice parameter
and reordering the terms. For example, for the S band in a body-centered
cubic crystal, in which the nearest neighbors are in the a(}, }, }) positions,
the second nearest in the 2(100) position, etc., we find for the numerator
in (2.157)

Ey+ K + 8] ()3 a/2) (cos k. a/2 cos ky a|2 cos k, a[2) +
2](a) (cos kya + cos kya + cosk;a) + 4](V2_a) (coskyacosky,a+
cos kyacosk,a + cos kyacosk,a) (2.158)

A similar expression is valid for the denominator.

If the overlap integrals in the denominator of (2.156) are neglected,
this equation has the form of a Fourier expansion of the energy. Such an
expansion must exist, but the coefficients need not agree with those
determined from calculated interaction integrals J(|R,|).
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If the band being considered is based on free atom states with nonzero
angular momentum, the (2/ 4 1) degeneracy of the atomic states will
be removed in the solid. The crystal Hamiltonian, which is given by
(2.150) has matrix elements which connect functions on different atoms
which pertain to states of different z components of angular momentum.
Since this perturbation is associated with a vanishing energy denominator,
it must be included at the beginning, whereas the mixing of states of
different / values is usually regarded as small, in the tight binding approx-
imation. Evidently it is necessary to employ first order degenerate
perturbation theory. When the lack of orthogonality of the atomic wave
functions on different atoms is considered, it is necessary to solve a
determinantal equation of the form:

det |H s (K) — ELyps (k)| = 0 (2.159)

The quantities H,,,,, and I,,,,, are the matrix elements of the Hamiltonian
and of unity on the basis of Bloch functions formed from orthonormal
atomic functions whose z components of angular momentum are m
and m’ respectively. These matrix elements may be determined, formally,
in terms of overlap, interaction, and crystal field integrals as in the pre-
vious discussion:

Hypr () = (N-Y) D ™™ (R"—R"”)ju,’: r —R,) x (2.160)

v, v

[ 0+2 Ve —R ]um:(r— R,) d%

=E, [amm, + e R”Eu: (t — Ryt (r) @3 | +

v#0

Z e~ ik.Ryj M: (r _ RV)V(]‘ — R,/)um/(l‘) dsy

v, v’
»'#0

Lot (K) = Qs + D ™ B j n(®— R)uw(r)d¥  (2.161)

v#0
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We can generalize the notation of Eq. (2.155) in an obvious manner. Let
us also include three center integrals by defining

Tt (R, Ry) = Eu,: (t— R,)V(r — R, )ty (r) d37 (2.162)

for R, # R,, % 0. We then have

Hmm'(k) = Eo Imm'(k) + Ko + Ze_ik-Rﬂ ]mm'(Rv) + Z]mm’(Rv, Rv’)

v=0 ,
v oEY
(2.163a)
Ly = Oy + O ¢ ™ S (R,) (2.163b)
v#0

These matrix elements are obviously quite complicated. General formulas
are not available. In many applications, three center and overlap integrals
have been neglected. Slater and Koster (1954) have tabulated the interac-
tion integrals in the two center approximation for s, p, and 4 functions
appropriate for cubic lattices. This tabulation has been extended to
hexagonal structures by Miasek (1957).

It is useful to consider the orders of magnitudes of the particular
types of integrals appearing in the tight binding approximation in order
to be able to assess the validity of the usual approximations in which
three center and overlap integrals are neglected. A systematic study
of this sort has been made by Wohlfarth (1953), who has considered a
linear chain of hydrogen atoms: his results will be quoted below. We
consider hydrogenic wave functions for simplicity with an exponential
dependence at large 7 (proportional say to e~ *); and let R, be the nearest
neighbor distance in the lattice. (For simplicity we may consider the
point charge lattice discussed in Section 2.3 — charges of atomic
number Z.) The two center interaction integrals between nearest neighbors
will be proportional to (Z/R)f(«R,)e,” *™ where f(e.R,) is a polynomial
which will depend on the particular functions involved. The overlap
integrals will be of similar structure although the factor Z/R; will not
be present. Except for this factor of Z/R,, there is no reason to expect
the overlap integrals to be much smaller than the interaction integrals.
To the extent that the potential in one cell depends only on the charge



108 CHAPTER 2. METHODS OF CALCULATION

distribution within that cell, the three center integrals will have to have
an exponential dependence at least as strong as e™ 2*%. These, then,
may be expected to be small in the limit of strong binding which may
or may not be attained in particular case.

In the example considered by Wohlfarth, the potential is not that
of neutral cells; rather, he has considered a potential which is a sum of
unscreened Coulomb potentials. In this case, some three center integrals
have the same exponential dependence as the two center ones. Let a
be the separation between nuclei (nuclei are located at points #a where »
is an integer). The nuclei have unit charge (in units of ¢). Wohlfarth
finds an expression for the bandwidth, Ej, correct within the tight
binding approximation, through the order of ¢~ %.

Ep = 4.84ae=%(1 — 0.30a—! — 1.96272) (2.164)

If all overlap and three center integrals are neglected, the result is
Eg=8ae~*(1 + a1 (2.165)
If the overlap integrals between nearest neighbors are included, then
Ep = 2.67ae~ %1 — 3a~! — 6a~2) (2.166)

This example suggests that the neglect of overlap and three center
integrals in the interest of calculational simplicity is not likely to be
justified. Slater and Koster (1954) have, however, proposed that the
simplest approximation to the tight binding method, in which only
nearest neighbor interaction integrals are included, may have some value
as an interpolation scheme: The integrals appearing in the E(k) expres-
sions in this approximation are regarded as parameters to be determined
by fitting the results of more accurate band structure calculations at
certain points of the zone, or from experimental data. This procedure
may be of some utility for narrow bands.

2.11 Wannier Functions

The wave functions employed in the tight binding method are linear
combinations of atomic orbitals and are not exact solutions of the
Schrédinger equation of the one-electron problem. Calculations with
such functions are rendered cumbersome by the lack of orthogonality
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of the atomic orbitals centered on different atoms. Wannier (1937)
introduced a set of functions which have come to bear his name that
are generalizations of atomic orbitals designed to avoid these difficulties.
Let 4;(k, r) be an (exact) solution of the one-electron Schrédinger equation
for a state of wave vector k and band index j. These functions are
orthonormal in the following sense:

S(/;, r)yi(k, 1) d% = J;;» 6(k — k') (2.167)

The integration includes the entire (infinite) crystal.'® The Wannier
function which is centered on a site located at R, is defined by

91/2 —ik R _Ql/2 " K. (r —
a;(r — Ry,) = (Qn)sﬂgg k n¢j(k,r)d3k=(2n)3lzsek(r Rn)ui(k'r) a3k

(2.168a)

where 2 is the volume of the unit cell, and u,-(k, 1) is the part of the Bloch
function which has the periodicity of the potential. The integration is
restricted to k vectors in the Brillouin zone. In some cases it is desirable
to treat k as a discrete vector

Y A
where a’, b’, and ¢’ are primitive vectors of the reciprocal lattice; £, #,
and A are integers specifying the number of unit cells in the crystal
in the sense of periodic boundary conditions; and /, m, and » are positive
or negative integers whose range is so chosen so that k lies inside the
Brillouin zone. Then the Wannier function is defined by

aj(r — R,) = ]/I_N e B gk, 1) (2.168b)

where N = /¥ .#, and the summation includes all wave vectors in
the zone. The Wannier function is a localized function. The exact nature

10 More precisely, the integral in (2.167) may differ from a delta function by
a phase factor (Blount, 1962a). This is not important for our purposes.
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of the localization is somewhat difficult to demonstrate rigorously
(Blount, 1962a), but may be seen qualitatively in the following way: We
put r = R, into (2.168a), where R, is a lattice vector. Then we have

012

an(R; — Ry) = (27)7

Se““‘Rf'R")uxk,O)dak.

If |R; — R,| is large, the exponential oscillates rapidly, and the integral
over k will become small. Hence the Wannier function will become small
at large distances.

The orthonormality properties of these functions may be demonstrated

as follows:
aj (r — Ry)a;(r — R,,) d% (2.169)
Q —ik-R,—k' Ry , %, ,
= &P Ee " w o (K, )i (k, 1) A3k’ d3k d3r
- 5 H’Ee—ik-(nm—nn)dsk
= §jjr

The summation relation (A2.10) has been employed in the last step of
(2.169). Wannier functions which are centered on different sites, or
which belong to different bands, are orthogonal.

The equation which defines the Wannier function may be inverted to
determine y;(k, r). We multiply by ¢ ®» and sum over lattice sites .

k’-R 91/2 ik’ — k).
26 "aj(l' — Rn,) == W[Z e k k) Rn "b](k’ l') dSk

n

The sum on the right-hand side is given in (A 2.9b). The result is'!

(K, M;ZV a;(r — R, (2.170)

11 If the Wannier function is defined through (2.168b) a factor N~ 12 replaces
(27)3/2/ Q12 in equation (2.170).
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In the case of free electrons, for which the wave functions are

1 )
l/l(k, I‘) S (2n)3/2 elk B

the Wannier function may be calculated explicitly. For simplicity, we
consider a simple cubic lattice of lattice parameter @, so that the Brillouin
zone is a cube —nja <k, ky, k,<mla,and we putr— R, = iX+ i Y+kZ,
where i, i , k are the usual unit vectors along the x, y, and z axes. We
obtain:

_ (2n)32sinmX[asinnY jasinnZ|a .
afr — Ra) = <15 XY 7l (2.171)

This function oscillates and decreases relatively slowly. For wave func-
tions less localized in momentum space, the Wannier function decays
more rapidly for large values of its argument. Kohn (1959) and Blount
(1962a) have shown that in the case of a periodic potential, the Wannier
function falls off exponentially at large distances.

The Wannier functions are not solutions of the Schrédinger equation,
but are linear combinations of eigenfunctions with varying energy. It is
useful, however, to determine the matrix elements of the Hamiltonian
on the basis of Wannier functions.

o
(2m)%P2

Hajr —R,) = Se_ R Hyi(k, 1) d3%

otz
(27)32

- > (5‘3_“"‘“"‘ %) (k) d‘”'k) 4(r — R
i

We define a Fourier coefficient of the energy &;(R,) by

Se— B (K)o (K, 1) d3k

0

S ¢ B E;(k) d3k (2.172)

(the integration includes a Brillouin zone). The Wannier function is seen
to satisfy the equation
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Haj(r —R,) = D &(Ri— R,)aj(r — R)) (2.173)
l

The matrix elements of the Hamiltonian can be obtained from (2.173)
with the help of the orthonormality relation for the Wannier functions.

Him,in = Sa;',‘ (rt — Ry)Ha;(r — R,) d% = &R — R,) 80 (2.174)

The significance of the quantities &;(R,) is made apparent when
Eq. (2.172) is inverted by multiplying by e~ ** ®» and summing over n.
With the use of (A 9.b), we find

Eik) = > &(R,) e " (2.175)

The energy is seen to possess a Fourier expansion in which the wave
vectors of the plane waves are direct lattice vectors.

It is somewhat difficult to employ Wannier functions directly in
energy band calculations because of the multiplicity of terms on the
right-hand side of (2.173). Variational principles for these functions have,
however, been derived by Koster (1953) and by Parzen (1953). Wainwright
and Parzen (1953) attempted to calculate energy bands in lithium in
this way; unfortunately, their work contains a serious error.

2.12 The Hartree-Fock Equations

Our discussion of the methods calculating the energy levels of electrons
in crystals has been based on a one-particle Schrédinger equation with
a periodic potential V(r). It is now desirable to inquire how this potential
is obtained.

One must begin by considering the many-electron system. The
electrons interact with the atomic nuclei and with each other. The
Hamiltonian (N electrons, atomic units) can be expressed as:

N N
2
— 72 R —_
H= 2’ VE+VE) + Z’ . (2.176)
i=1 7{i >19)
The first term represents the kinetic energy of the electrons; the second,
their potential energy in the field of all the nuclei; the third, the elec-
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trostatic interaction of the electrons with each other: (r; is the position
of electron 7, and 7;; is the distance between electrons ¢ and j). The full
Schrodinger equation with this Hamiltonian is not separable on account of
the interaction term, so that approximate methods of solution must be
employed.

The principal approximation procedure for reducing the complexities
of the many-body problem is the Hartree-Fock method. Most energy
band calculations involve this approximation, although it is usually not
possible to solve the Hartree-Fock equations directly. These equations
will be derived in this section, and some of limitations of the procedure
will be mentioned.

First, let us consider some general properties of the wave function
of a many-electron system. A total spin operator may be defined:

s= s (2.177)

The following commutation rules hold for the Hamiltonian of Eq. (2.176)

[H,82]=0 [H,S,]=0 (2.178)
[H, 82 =0

Since the spin operators 8%, S,, 8,2 also commute with each other, the
stationary states of the system will be eigenfunctions of these operators
as well as of the energy.'? Also, if the potential V(r) is periodic with

respect to translations by lattice vectors R,, then we also have
H,7R,)] =0 (2.179)

where 7 (R,) displaces the coordinate of each electron by R,. The wave
function of the entire system satisfies Bloch’s theorem and thus can be
characterized by a total wave vector K. A further property of the wave
function is antisymmetry: The wave function must change sign when
the coordinates and spins of any two electrons are interchanged.

In the Hartree-Fock method the wave function of the system is
approximated by a determinant of orthonormal one-electron functions.
In general, these functions, which we denote as ,(r;), are two-component

12 In the case of a single atom, A commutes with L2, the total orbital angular
momentum, L,, and the angular momentum for each electron, 1,2
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spinors (g stands for all the quantum numbers required to specify the one
electron functions). The determinantal wave function

Py (ry) e Pn(ry)

Y(1...N) N B (2.180)

1
At

dulen) oo P(rw)

satisfies the antisymmetry requirement, since the interchange of two
particles corresponds to the interchange of two rows of the determinant.
Interchange of a pair of rows changes the algebraic sign of a determinant.
The determinantal wave function is not, in general, an eigenfunction of
either 82 or S,, and thus does not correspond to a state of definite
multiplicity. (Two very important exceptions are: (1) the state of
complete spin alignment: all spins ‘“up” along a “z” axis, and (2) the
singlet state in which the space part of ¢, is the same for two states with
opposite spins.) It is generally necessary to form linear combinations of
determinantal wave functions to obtain eigenfunctions of 82. This process
has been discussed in detail by Léwdin (1955).

The best determinantal wave function ¥ which can be constructed
is the one which minimizes the expectation value of the energy, subject
to the orthonormality of the one-electron functions. The variation
principle can be used to determine the equations satisfied by the one
electron functions if the average energy is to be minimized. The expecta-
tion value of the Hamiltonian (2.176) with the wave function (2.180)
can be expressed as:

N
E=2 U P (1) (— Vi* 4 V(1) hs(ry) dr, (2.181)
1 h; 2
+ 52 H s (1) 2[ebe(ry) |2 = dry P,
t=1 12

o T‘; 2 H Ps* (ry)h* (rp) ’—i Ps(Tg)ife(ry) d3r, A7,

=1
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The integrations include summation over the spinor indices implicit in
the one-electron wave functions. Application of the variational principle
leads an equation for the one-electron functions. (Details of the deriva-
tion of the Hartree-Fock equations may be found in standard texts, for
instance, Seitz, 1940.) It is convenient in the following to exhibit the
spinor indices explicitly, which we do by writing ,,(r,), etc., to designate
the ath component of the Pauli spinor ¢(r;). (x may have the values
1 or 2, and we will adopt the summation convention that a repeated
spin index implies a sum over both possible values.) We find:

~ Vi + Vi) + Zj'ﬁt: (F3)ra(ry) ng:;"z] thp(ry) (2.182)

- 2 U ‘pbt: (Tg)thsa(rs) %‘P’z] Pup(ry) = & sp(ry)

These are the Hartree-Fock equations (Fock, 1930a, b) in the form given
by Thompson (1960). For a system of N electrons, one evidently has a
set of 2N coupled integro-differential equations.

These equations may be rewritten in a form in which the spin indices
are suppressed, i, etc., being regarded as a column matrix with two
rows, and the Pauli spin operators appear explicitly.

— 2+ Vi) + ZSWU(Q)P%d%’z} Ps(ry) (2.183)

—ZS% ) EE2 %y,

In the exchange term of this equation (second integral), o, acts on the
spinor ¥, ; 6, acts on ¢, and I is a unit operator on both 5, and ,. A sum
on the spin indices associated with i, is understood. The equality of the
exchange terms in (2.182) and (2.183) may be verified by explicit com-
parison of the components.

Slater (1951a) and Thompson (1960) have discussed the interpretation
of these equations in detail. The third term on the left evidently represents
the electrostatic potential energy of an electron in state s in the field of
other electrons. The exchange term reduces the electrostatic interaction

i Ps(ry) d3ry = &5 ihs(ry)
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of the electrons, the reduction being greatest when the spins are parallel.
This occurs because the probability of close encounters between electrons
of parallel spin is reduced by the Pauli principle. Contributions to the
sums in (2.183) from terms with s = ¢ cancel: the electron does not act
on itself. It must be noted that the exchange operator does not have the
form of an ordinary potential: an integral operator is involved. The
exchange operator is conventionally defined as-follows: The exchange
term in (2.183) may be written as

JA (L, 2)ehis(r,) @3, (2.184)

where

Nonetheless it is often necessary to approximate this term by a potential:
Two such approximations have been discussed by Slater (1951a). This
problem will be considered in the next section.

The spinors ,(r) which are solutions of the Hartree-Fock equation
will not, in general, be eigenfunctions of the z component of spin. This
complication is usually neglected in order to simplify the use of these
equations. Such a simplification is probably not justified in the case of
materials with a degree of ferromagnetic or antiferromagnetic alignment.
The assumption that the wave functions are eigenfunctions of o, does
not lead to an inconsistency in the Hartree-Fock equations since if one
of the components of i, is zero, the equation for this component is trivially
satisfied.  (The Hartree-Fock equations may, however, have other
solutions.) In this approximation, the exchange interaction only occurs
between electrons of parallel spin. This assumption does not imply that
the position dependence of the wave functions of states with “up’ and
“down”’ spin is the same if the number of “up’’ and ““down’’ spin electrons
is different. The difference may be, in fact, quite significant (Pratt, 1956,
refers to inclusion of this as the “unrestricted Hartree-Fock method”),
and is responsible for the phenomena of spin polarization which will be
discussed in Section 3.10,
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If wave functions satisfying the Hartree-Fock equations are used
in the evaluation of the energy of the N-electron system according to
(2.181), the result is

E=) [&:s—% X ﬂ la(rg) |2 |ihs(ry) 2 —d3rl @, (2.185)

+ %Z H Ps* (ry) ¥ (ry) % Ps(ra)ihu(ry) dry dBr,

The reason that the total energy is not just a sum of “‘one-particle energies”
g 1s that this sum counts each electrostatic interaction twice. It is a
general characteristic of the theory of interacting particles that the total
energy is not just the sum of the one-particle energies, but rather depends
on the distribution of the particles.

The justification for the designation ‘‘one-particle energy’ comes
from Koopmans’ theorem (Koopmans, 1934): Let us consider the dif-
ference in energy between two systems containing N and N — 1 particles,
respectively, but otherwise identical. In particular, we suppose that
the one-electron wave functions ¢, are the same in each case; however
in one, the state y; is unoccupied. The approximation of unchanged wave
functions is likely to be reasonably valid in a solid, at least for states
belonging to a reasonably wide band, since the electrons are not bound
to any particular atom but spread throughout the solid. The possible
errors in this assumption have been discussed by J. C. Phillips (1961).
From (2.181), we find then that the difference in energy, AE, is given by

AE = St/f — 2+ V) a® + 2“ [he(r) [* [ (o) [* ,%d'% d’ry

-2 H i () *(r%) ,2; i (To)i(ry) d3r, d%,  (2.186)

The factors of } in (2.181) disappear because the deleted state, i;, occurs
in both summations. If the wave functions satisfy (2.182), then we
have just

AE = ¢ (2.187)
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Hence the one-electron energy parameter ¢; has the significance that it
gives the energy required to remove an electron from state 7. As a
corollary, the energy which has to be added to the system in order to
remove an electron from state 7 and place it in an unoccupied state ¢ is
e; — €. Since the energy bands in a solid are determined, in principle,
from the Hartree-Fock energy parameters, the physical interpretation
of the bands is that afforded by Koopmans’ theorem.

In the case of a solid for which the potential V(r) is periodic, it is
possible to find wave functions as solutions of the Hartree-Fock equation
which satisfy Bloch’s theorem. The potential and exchange integrals
which are computed with these functions have the proper periodicity.
Hence the use of Bloch’s theorem as a boundary condition on the wave
functions is self-consistent. The Hartree-Fock equations may, however,
possess other solutions which do not have this periodicity, and it is a
matter of some sublety to determine exactly what the lowest state is.13
Other solutions of the Hartree-Fock equations have been discussed by
Thompson (1960) and by Overhauser (1962). In particular, Overhauser
has shown that the ground state of a free electron gas in the high density
limit contains static spin density waves. Spin density waves are discussed
briefly in Appendix 5.

Except in the case of such simple systems as the free-electron gas,
particular solutions of the equations must be found by the method of
self-consistent fields (see for instance Hartree, 1957). In this method
the potential and exchange integrals are calculated with an assumed
set of wave functions. When these integrals are specified, the Hartree-
Fock equations are linear. The linear equations are then solved; the
potential and exchange integrals are recalculated with the new functions,
and the process is repeated until the successive iterations agree within
some assigned limit. The process has been carried through with precision
for some relatively simple atomic systems, but application to solids is
rendered very difficult by the necessity of evaluating the sum over
occupied states in (2.182). What is generally done is to assume a set of
ordinary and exchange potentials. One then has a one-particle Schrédinger

13 The essential point is that more than one set of wave functions may satisfy
the Hartree-Fock equations. In such a case, one must determine which set yields
the lowest total energy. This set will describe the Hartree-Fock ground state.
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equation. The derivation of such potentials will be considered in the next
section. Authors often advance arguments of reasonable plausibility
that the resulting solutions are nearly self-consistent.

To conclude this section, we prove a theorem concerning deter-
minantal wave functions. Suppose that the N electrons present just
suffice to fill states in a Brillouin zone belonging to a single band at the
absolute zero of temperature. We consider the situations for which the
determinantal wave function is an eigenfunction of S2: either complete
ferromagnetic alignment, or the singlet state with N/2 spatial wave
functions and equal numbers of up and down spins. There are N or N/2
atomic sites in the system, respectively. The individual wave functions
are supposed to be solutions of the Hartree-Fock equations which satisfy
Bloch’s theorem so that each column of the determinant is characterized
by a particular k. It is necessary to consider k to be a discrete quantity,
taking N (or N/2) possible values. Let us express the Bloch one-electron
wave functions (k,r) in terms of Wannier functions by the inverse
of (2.168b)

_ 1 Ry
Hon) = 2 afr — R,)

This substitution is made in the determinantal wave function. Then we
have

1 1
$(l...N) = Wdet (K, 1) = Wdet

V;,Z 5B e _ R,

1

JE R,
Nt

W det |a(r —_ R”)|

£
= ——det |a(r — R, 2.188
g a( )| (2.188)

In the second line of (2.188) we have made use of the rule for multiplying
determinants; and then observed that since the transformation between
Bloch functions and Wannier functions is unitary, the determinant of
the coefficients is a complex number of modulus unity. Since the phase
factor can be discarded, we see that the many-electron wave function
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may be equally well represented as a determinant of Bloch functions or
as a determinant of Wannier functions. It must always be observed that
this replacement is only valid in the case of a filled band. Conversely,
in the case of atoms with filled shells, a determinant of localized atomic
wave functions may be transformed to a determinant of tight binding
wave functions (Seitz, 1940).

2.13 Determination of the Crystal Potential

The usual approximation to the Hartree-Fock equations is the fol-
lowing: Instead of (2.183) we write:

[— V24 V(1) + Volr) + Vex(r) ghx(r) = E(K) tfe(r) (2.189)

in which V(r), as before, is the potential energy of the electron in the
field of the nuclei of the system; ¥V (r) is the ordinary average electrostatic
potential energy of an electron in the field of all the charges of the system;
and V., is an average exchange potential whose explicit spin dependence
is neglected. This potential may be defined formally as follows (from
2.184)

j A(L, 2)ix(ry) @37y = Vex(ty)xc(ry)

or

Vo = y.r‘/’t (ro) bk (ry)2/ryp 4Py da(r (2.190)
¢‘k(

The wave functions are assumed to be eigenfunctions of the z-component
of spin and the sum on t includes only states with the same spin as i,.. The
exchange potential is singular at those points where i, (r;) has zeros;
these singularities make no contribution to the energy, however. Of
greater importance is the fact that V_, depends on the state k whose wave
function is being calculated, whereas V is the same for all states.

It is often desired to approximate V, by a potential which is the
same for all states. The most celebrated such approximation is that
proposed by Slater (1951a): The exchange potential in an electron system
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with a given charge density p = X y;* ¢, should be the same as in a
free electron gas of the same density. (The computation of the exchange
potential energy of a free electron gas is discussed below.)

Vex &~ — 6-4?;[%7 :,bt*(r)t/;t(r)] | (2.191)

The sum in (2.187) includes only states of the same spin as the one on
which V,, acts. Several authors have discussed the adequacy of this
approximation, including Herman et al. (1954), Callaway (1955), Maslen
(1956), and Hartree (1958). The general conclusion would seem to be
that, although (2.191) reproduces the general trend of (2.186) fairly well,
it may be in error quantitatively by a substantial factor, particularly
when the charge density is small.

An approximation which probably is of greater accuracy is to assume
that the exchange potential for a given state depends primarily on the
angular momentum of the state considered, rather than on the energy;
or in the case of a solid, on the predominant angular momentum in the
expansion of the wave function in spherical harmonics (Herman, 1954).
One may then approximate (2.190) by allowing i, to be a wave function
belonging to the particular angular momentum considered. This approach,
however, is only pertinant to the problem of calculating the exchange
interaction between the band electrons, and electrons tightly bound in
inner shells. The latter states are very nearly eigenfunctions of angular
momentum.

The problem of calculating the exchange interaction between band
electrons is a very difficult one. If this interaction is included in a straight-
forward way serious disagreement with experiment is likely to occur.
To see why this is so, let us calculate the exchange energy of a free electron
gas: Let us consider

& (k) = Z “ ‘/’k*(ﬁ)‘l’l’:'(rz) (2/|ry — To|)ihu(re) b (vy) d3r, dBry (2.192)

k’

Let
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where £ is the volume in which the wave functions are normalized. Then
we get for the integral in (2.192)

1 ) 2
— e1(k'—k)~(l’,—l'l) d3r. d3r.
-ng.‘ e

The variables of integration may be changed to r;, r, — r;. The integral
yields

8n 1
This must be summed over k’, but only states of like spin are to be
included. We replace X, by [2/(27)3] [d%k'.

Then

8n 1 1 , 1
Z Q k—KP = §dk R RT— 2k cosh 10

in which 0 is the angle between k and k’. We suppose the electrons occupy
all states with wave vectors £ <C k; where &g is the radius of the Fermi
surface. The integration yields:

e [ RP—he? |k kp
K= 2k |y 1
al) =7 [* Skhe |k ke

] (2.195)

If we look at the Hartree-Fock exchange term (2.184) we see that
for the free electron gas with wave functions which are eigenfunctions of ¢,,

EA(H — To)ihk(ry) 4%, = & (K)h(ry) (2-196)

The gas must, of course, be neutralized by a uniform distribution of
positive charge in order to prevent catastrophe. Hence the average
electrostatic potential in the gas must be zero. Consequently the one-
particle energy of the free electron gas is

E(k) = k? — ¢ (k) (2.197)
Next, we observe that the derivative of ¢(k),
de, 1 kp? k
ﬁ";[(”ﬁ)l ‘k—'—kp

+ =ZE (2.198)

2kp}
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contains a term which is logarithmically infinite on the Fermi surface.
From (1.47) we see that the density of states, which depends inversely
on dE|/dk, would then vanish on the Fermi surface. This result would
have great influence on the calculation of the properties of metals, which
depend critically on the state of affairs at the Fermi surface and is in
violent conflict with experiment.

It is evident, then, that something is fundamentally wrong with the
Hartree-Fock theory. In fact, the influence of the electron interaction,
when calculated with a more detailed theory, turns out to be much weaker
than is predicted by (2.198) for instance. We see that it is undesirable
to include the full exchange interaction between nearly free electrons
in a band calculation.

The total exchange energy per particle of the system is found by
integrating (2.195) over k. If we make use of the relation implied by
(1.50) between % and the density of electrons, we find

Bt P H D ) (1) o il () Oy,

. |ry— 1y

3p 13
—_6 (Sn) (2.199)

in which p = N/V is the density of electrons. (To obtain agreement with
(2.191), we observe that in the present case, both spins are included in p;
the quantity in the parenthesis becomes 3p_ (47 if we include electrons
of either (+) spin.)

Even if the difficulties associated with inclusion of the exchange
interaction are neglected, the computation of the effective crystal potential
is a most difficult one. It is certainly necessary to include the screening
effect of the distribution of band electrons on the average electrostatic
potential. This implies, however, that the electron wave functions can
be found conveniently throughout the occupied portion of the Brillouin
zone. In fact, the best that can be done is to sample the distribution for
some selected states, as has been discussed by Kleinman and Phillips (1959),
among others. Most authors have not attempted to carry the iterative
process to obtain self-consistency very far. Some approximations found
in the literature include: (1) self-consistency with respect to states at
the center of the zone; (2) the charge density in the crystal is represented
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as a sum of free atom densities; or (3) the charge density of the band
electrons is assumed to be nearly uniform. The latter approximations
may be reasonably accurate for the alkali metals (Callaway and Glasser,
1958).

Faced with these problems, Wigner and Seitz (1933) proposed an
approximation which appears to be remarkably good for the alkali
metals, insofar as can be judged from the very substantial measure of
agreement between the calculated and observed values of the cohesive
energies of these metals: Each electron moves in the field of a singly
charged ion. The argument is that on account of exchange effects, and
also the coulomb repulsion of electrons, it is unlikely (in a monovalent
material), that two electrons will be found on the same lattice site.
Consequently the potential energy of a single electron will be that due to
its presence in the field of a single ion, the rest of the lattice being neutral.
The polyhedral cells approximate spheres reasonably closely so that
multipole components in the potential may also be neglected. The
potential within the cell thus does not differ appreciably from what it
is in the free atom at the same position. In a certain sense, this approx-
imation -transcends the Hartree-Fock method, since the neutrality of the
cells required here is not a consequence of the Hartree-Fock equations.14

2.14 The Quanfum Defect Method

If we accept the Wigner-Seitz approximation with respect to the
crystal potential, it seems reasonable to try to use spectroscopic data
from the free atom as a guide in the construction of the potential. This
was realized quite early. Accordingly, in their calculation of the cohesive
energy of sodium, Wigner and Seitz (1933) employed a semiempirical
potential previously constructed by Prokofjew (1929) to account for the
observed spectrum of the free sodium atom. Similarly, Seitz (1935)
determined the potential to be used in a calculation of the cohesive energy
of metallic lithium from the spectrum of the free atom. Gorin (1936)
attempted the same thing for potassium.

14 Cohen (1960) has criticized the Wigner-Seitz approximation on the grounds
that the ‘“‘correlation hole” (the electronic density excluded from the cell by the
coulomb repulsion) must have a significantly different position dependence for
states of different symmetry.
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The construction of an empirical potential in the fashion of Prokofjew
and Seitz is, however, a difficult problem. It is complicated by the fact
that the effective potential seen by an electron actually must depend
on the energy state, as is seen from (2.190). This dependence is presumably
quite weak for lithium and sodium; for substantially heavier atoms,
such as potassium, construction of a single empirical potential for all
states did not appear to be possible (Gorin, 1936). It was subsequently
suggested by Kuhn and Van Vleck (1950) that the spectroscopic informa-
tion could be used almost directly in the energy level problem, without
the necessity of constructing a potential explicitly. This procedure,
which has come to be known as the “Quantum Defect Method™ has been
significantly refined and extended by Brooks (1953, 1958; Brooks and
Ham, 1958) and by Ham (1954, 1955).

The essential idea of the procedure is the following. In a free atom
of an alkali metal, the valence electron is loosely bound to a compact
spherical core of electrons in closed shells. These closed shells will not
be significantly modified in the solid, and occupy only a small portion
of the volume of an atomic cell. For this reason, the electrostatic field
which acts on the valence electron is nearly a pure coulomb field through-
out most of the cell. Hence its wave function must be a (negative energy)
coulomb wave function in the outer regions of the cell. The same is true
in the free atom. (It is not implied that the wave function is hydrogenic.)
There are two linearly independent solutions of Schrédinger’s equation
with a coulomb potential. These are confluent hypergeometric functions.
For a given energy, there is a unique ““coupling constant” which determines
(up to a multiplicative factor) the combination of these two functions
which will vanish exponentially at infinity. This behavior of the wave
functions of course occurs at the energy eigenvalues of the free atom.
The coupling constant is thus determined for those energies. If it is
assumed that the coupling constant depends smoothly on energy, it is
possible to extrapolate it as a function of energy, and hence to determine
it for any energy. This coupling constant is, in reality, determined by
solving the wave equation with the actual potential energy inside the
core; it is possible, however, to determine’ this constant empirically
without taking explicit account of interactions in the core.

In the solid, the wave functions must satisfy certain prescribed
boundary conditions (Section 2.6). These conditions may all be stated
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in a fashion independent of the normalization of the wave function.1®
These boundary conditions also determine, in principle, a unique value
of the coupling constant. Since this coupling constant now is known as
a function of energy, the energies of interest in the solid state problem
are also determined. Brooks and Ham (1958) have also shown that much
information about the wave function in the interior can be obtained.
The method in its present form has been applied to the alkali metals by
the papers to which reference has already been made; it has also been
applied to the computation of the cohesive energies of the noble metals
by Kambe (1955). The difficulty of interpreting spectroscopic data for
multivalent atoms to effectively ‘“‘determine’” a potential has so far
prevented application to such materials.

To formalize this discussion, we consider the radial wave equation
for the cellular method, (2.70), and make the following substitutions:
U, =7rR,, V = — 2/r (since we are concerned with the outer regions of
the cell), and E = — 1/n? (» is an integer in the hydrogenic problem).
Then we have

12 (41
— s+ -— | U=0 (2.200)

We need two linearly independent solutions of (2.200). It is convenient
to choose them so that one of them, U,,, vanishes at the origin and the
other, U, ,, is singular there. Consequently U;; could not appear in
the usual hydrogenic problem. These functions may be expressed in
terms of Bessel functions (Wannier, 1943; Kuhn, 1951; Ham, 1957)

» il 2
Uio(n,7) = %]21+1(z) = mMﬂ,l+l/2 (7’) (2.201)

2
Ul,l(%, 7) = §Nzl+1(2)

15 This is most easily seen for the lowest state (1) for which the logarithmic
derivative of the wave function is required to vanish on the atomic sphere (in the
spherical approximation). We have also determined the band parameters E,, E,
independently of the normalizations of the wave function.
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in which
7= (8r)12 (2.202)

The functions J3;,,, Nj, ., are combinations of Bessel functions,
and M, ; ,,, is a regular Whittaker function. The relation between the
coulomb functions and Bessel functions is obtained in the following way:
The change of independent variable (2.202), coupled with the substitution
U, = (2/2)V, converts (2.200) into the form

axv, = av, Ay
2 47V & 2 _ Y, — | £
2 Tig TR n2(2) 1
If n = oo (E =0), V, is evidently a Bessel function of order (2/ + 1).
Further, for interesting states in the alkali metals, one has £ < 1 so
that #2> 1. The following expansion is suggested

1
Vi) = D =5 Vinla) (2.203)
k
The functions V,;, satisfy:
ViVio=0 (2.204)
Vl Vl,k = (2/2)4 Vz’k__l(z)
in which
Vi —2212——|—z£+z2—(2l—|—1)2 (2.205)
T T '

Kuhn (1951) has shown that the functions V; , may be generated from
cylindrical functions. Let Cy,_ ; be an arbitrary linear combination of the
ordinary Bessel functions [, ,(z) and the Weber function Y, _(2)

Co1(2) = AJa11(2) + BY 2 11(2)

(To generate J3,.,, we take A =1, B=0.) It follows from the
recurrence relations obeyed by the cylindrical functions that

9 9 q+2 1 q+3
m{ﬂ(g) czz+3+q<z)—w(§) sz+4+q(z>} (2.206)

424 9) 43+ 9)
g+4
= (%) Coiti+q
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It is evident that V, y = C,, ;. Next, set ¢ = 0 in (2.206). The equation
is then identical with that satisfied by V,; provided that V;, is given
by the bracket on the left of (2.206) for ¢ = 0, namely,

14+ 1(z)? 1 (zV
Vl,1:4(§) C21+3—-12(?) Cort4a (2.207)

Higher terms may be generated. The details of the series for the regular
function J3,, ; and the irregular function Ny, , are given by Kuhn (1951)
and, more completely, by Ham (1955). The functions U,, and U,,
may be obtained from tables computed by Ham (1955) and (more
completely) by Blume et al. (1959).

We now express the general solution of (2.200) as
Uilr) = a(n)U, o(n, 7) 4 p(n) Uy 1(n, 7) (2.208)

Both U,, and U,, are present because the potential has a core region
in which it is not coulombic.

The problem is now to determine the ratio a(n)/y(n). At an eigenvalue
of the free atom, the wave function goes to zero exponentially at oo and,
consequently, must be represented by the function W, . ;,(27/n),
which has this property Whittaker and Watson (1952). Wannier (1943)
has given the relation between the quasi-Bessel functions Jj, ,;, N34,
and the Whittaker function W, ; 5, It is

W 111227/n) = T(n + 1 + V)n="=1(2/2) J 31 +1(2) cos w(n — I — 1) +
I'(n — On*(2/2) Ny +1(2) sin m(n — I — 1) (2.209)

Hence, at eigenvalues of the free atom the ratio «(n)/y(n) is determined
to be:

afn) In+1+1)
pn) w21 0(n—Dtanan — 1 — 1) (2.210)

For any energy, the ratio a(n)/y(n) is defined as
a(n) I'in+141) o

yn)  w¥T(n — ) tan 7w (n)
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When the two previous equations are compared we see that
vim)=1l+m' +1—n (2.212)
where m’ is an arbitrary integer. The energy at an eigenvalue is

L__ 1 (2.213)

E= — — =
n? (m — »)?

in which m = 4+ m’ 4 1 is an integer. Consequently, » differs from the
experimental quantum defect by an integer at most. The fundamental
procedure of the quantum defect method is to set » equal to the observed
quantum defect at energies corresponding to the eigenvalues of the free
atom, and to determine it at other energies by putting a smooth curve
through the experimental points. The justification for this procedure has
been given by Ham (1955) and Brooks and Ham (1958), in terms of the
WKB approximation. Of course, once v is determined, the radial
wave function is known as a function of energy in the outer part of an
atomic cell (except for a constant factor), and the standard techniques
of the cellular method may be applied. The quantum defect procedure is
also easily adapted for use with the Kohn-Rostoker method of band
structure calculations (Section 2.8), since the required values of the
logarithmic derivative on the inscribed sphere can be obtained once the
ratio «(#n)/y(n) has been found for all energies.16

Also on the basis of the WKB approximation, Brooks and Ham
obtain the following formula for the ratio of the amplitude of the wave
function, 4(r) = U,y(7)/r at a nucleus of atomic number Z to its value at ,:

$0(0) 2217,

bolr) — cos 7o (m) Uoa(m ) — tan @) Uonlm 7] 2 2H4)

The use of this result, in conjunction with the Kohn-Rostoker method,
to determine values for the amplitude at a nucleus of a wave function
of an electron on the Fermi surface, has been discussed (and applied to
potassium) by Milford and Gager (1961).

16 Brooks and Ham find that a more satisfactory extrapolétion procedure is
obtained by defining a(n)/y(n) = — 1/tan nin(n). n(n) is a smoother function of
»n than v, since if # is an integer » must also be an integer.
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From a theoretical point of view, the Quantum Defect Method is
extremely attractive. Many of the difficulties of the Hartree-Fock
procedure are avoided. Brooks and Ham show that interaction effects
concerning core electrons on a lattice site are included: It is necessary
to assume that the valence electron may be described by a one-electron
wave function, but the wave function of the core may be quite complicated.
Further, if proper account is taken of the spin orbit splitting of energy
levels of nonzero angular momentum, relativistic effects may also be
included (Callaway et al., 1957).

As a practical matter, success of the quantum defect method depends
on the extrapolation of the quantity » (or #) obtained from spectral data
for energies corresponding to eigenvalues of the free atom. The energies
of states at the bottom of the valence electron band in the alkali metals
will be, however, 2 or 3 ev below the lowest free atom level: some
uncertainty in the extrapolation procedure is evidently possible. It is
also necessary to average out the spin orbit splitting for levels of nonzero
angular momentum. A second difficulty arises from the fact that the
potential energy of a valence electron in the outer part of the cell is not
strictly coulombic, but contains a term — «fr%, where a is the polari-
zability of the ion. The ion deforms in the field of the external electron,
and the induced dipole moment produces the additional contribution
to the energy. This effect is actually a manifestation of the correlation
between core and valence electrons (Callaway, 1957a). The significance
in the present instance is that the wave functions in the exterior are not
precisely coulomb functions. The necessary corrections to the procedure
have been discussed by Ham (1955) and Brooks and Ham (1958). They
become important for the heavier alkali metals. These topics will be
considered in more detail in Chapter III.

2.15 The Pseudopotential in Relation to the Quantum
Defect Method

In Section 2.5, it was shown, within the general framework of the
OPW method, that the requirement that the valence electron wave
functions be orthogonal to core states tends to produce an effective
repulsive potential acting on the valence electron. The general correctness
of this reasoning, and its independence from the specifics of the OPW
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method may be inferred from the example of the free sodium atom, for
instance. Beyond the core, the potential energy is — 2/r, while inside
the core, the potential decreases, becoming — 2Z/r at the center. Nev-
ertheless, the energy of the valence electron (—0.3777 rydbergs) is larger
than that of the lowest state in a pure coulomb potential (— 1 rydberg).

This suggests that one might introduce a potential energy for the
valence electron which would be — 2/r for large 7, but contain a repulsive
part for small ». This pseudopotential would include the effects of
orthogonality of the valence electrons to core electrons, so that the lowest
valence electron state is also the lowest bound state in this potential.
A Yukawa form, Ae #[r, was suggested by the crude considerations of
Section 2.5. This idea was introduced by Hellmann and Kassatotschkin
(1936a, b) who called it the “combined approximation.” They applied
the method to the determination of the cohesive energies of the alkali
metals. It has also been applied to the study of molecules.

There is, in addition, a certain similarity to the quantum defect
method. Spectroscopic data may be used to determine the pseudo-
potential parameters (4 and § above, or a more complicated expression
could be employed). A different potential for each / may also be deter-
mined. The procedure is as follows: It was seen in the previous section
that, for eigenvalues of the free atom, the wave function is uniquely
determined in the coulomb region if the energy is known. One may then
numerically integrate the wave equation with the repulsive potential,
adjusting the pseudopotential parameters until the logarithmic derivative
of the wave function in the coulomb region agrees with that computed
from the coulomb wave functions. An iterative procedure has been given
which facilitates this determination!? (Callaway, 1958b).

There is, moreover, a certain advantage over the quantum defect
method. The quantum defect method cannot be used directly in band
calculation procedures based on plane wave expansions. All these require
an explicit potential. The required potential can be furnished by the
pseudopotential procedure. There is also the further advantage that
additional terms may be added to the pseudopotential to take account
of differences between the crystal potential and that of the free atom.

17 The variational procedure employed by Hellmann and Kassatotschkin does
not seem to give accurate results if simple trial functions are employed.






Chapter 3

Band Structure of Materials

In this chapter the results of experimental and theoretical deter-
minations of band structures in some materials will be surveyed. No
attempt at completeness is intended. Previous reviews of calculations
prior to 1958 are those of Callaway (1958a), Herman (1958), Slater (1956),
and Raynor (1952). Experimental information concerning band structures
has been surveyed by Lax (1958), and with emphasis on the theory
underlying experimental procedures by Pippard (1960).

3.1 The Alkali Metals: Cohesive Energy

The calculation of the cohesive energy of the alkali metals was,
historically, the first problem in which band theory was applied to real
materials. The physical principles underlying the cohesion of the alkali
metals were first determined by Wigner and Seitz (1933, 1934) in their
classic study of the binding of metallic sodium. More recently, they have
reviewed the general theory of the cohesion of metals (Wigner and Seitz,
1955). Subsequent studies have extended their work, but have not caused
a modification of the basic ideas.

The cohesive energy is essentially the difference between the average
energy of a valence electron in the solid, and the energy of the valence
electron in the lowest state in the free atom. The latter may be obtained
directly from spectroscopic data, or it may be found from an atomic
self-consistent field calculation. In the solid, there are two principal
effects to be considered. The energy of the lowest valence electron state

133
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in the solid is lower than in the free atom because the boundary condition
for this state (I, see Section 2.6) reduces the kinetic energy by forcing
the wave function to have zero normal derivative on the surface of the
atomic polyhedron. The difference in energy between these states is
called the boundary correction by Wigner and Seitz (1955). The lowest
state in the solid is predominately s-like, and the second radial derivative
of the wave function tends to be quite small near the boundary of cell:
If 7, is the radius of the sphere whose volume equals the volume of the
atomic polyhedron, one generally has V'(r,) nearly equal to the energy of
the lowest state. Consequently, the wave function tends to be quite flat
over much of the volume of the cell. If i, is the wave function, for this
state, the average kinetic energy is, to a good approximation,

2

4 dr (3.1)

- fi b a2

(The result follows on integration by parts. The integrated part vanishes
on account of the boundary condition.) In the free atom, the derivative
of the wave function is negative at the typical »,. There is a further

contribution to the binding resulting from a compression of the valence
charge distribution into a region of more negative potential energy. The
boundary correction amounts to 73 kcal/mol in the case of sodium.!

Opposing the boundary correction is the Fermi energy. The electrons
occupy a Fermi distribution with only two electrons in each state. It is
customary to expand the energy of a state of wave vector k as a power
series in Kk, in conformity with Eq. (2.73):

E(k) = Eg+ E, k2 + E k% + ...

The average energy per particle is, in atomic units,

Ek dak
E,= I _[d3k = Ey + Ex (3.2)
221 E 581 E
Ex= 3 2+ 1 4
7 7s

1 Energies relating to the calculation of cohesive energies of solids are traditionally
measured in units of kilocalories per mole. One kcal/mol is equal to 0.04336 ev/atom
or to 0.003187 rydberg/atom.
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in which Ey may be considered to be the average kinetic energy, or the
average Fermi energy. Terms of sixth order and higher in E(k) are
usually neglected as also is the fourth order cubic term. FEy amounts
to about 46 kcal/mol in the case of sodium (r, = 3.93). The cohesive
energy, estimated on this basis, is 27 kcal/mol for sodium, already in
good agreement -with the experimental value of 26.0 kcal/mol.

It is also necessary to take account of the electrostatic interaction of the
electron distribution. If one stays within the framework of the Hartree-
Fock approximation, but uses the Wigner-Seitz approximation to compute
the crystal potential, the total energy per particle is determined from
(2.191) and (3.2) to be

SIURY | VS DA

kk’

H‘l‘k*(rl)‘/‘;’ (ry) ,1: e (Xg) e (v;) 437, @Pry

These integrals may be evaluated with good accuracy in the case of the
alkali metals under the assumption that the wave functions are plane
waves. (The accuracy of this approximation has been demonstrated by
Wigner and Seitz, 1934.) The first term, which represents the “self-
energy’’ of the charge distribution is easily determined to be 1.2/7,. The
second term, which is the exchange energy of the electrons, can be
determined from (2.199) to be 0.916/r.. The difference of these contribu-
tions, 4 0.284/r,, amounts to 23 kcal/mol in the case of sodium. Clearly,
if the electron interaction is treated in the Hartree-Fock approximation,
the computed electrostatic repulsion is large enough to destroy the good
agreement between the simple theory and experiment.

It is evidently necessary to treat the electron interaction more
accurately than is permitted by the Hartree-Fock approximation. In a
lengthy and difficult calculation, Wigner (1934, 1938) attempred to
estimate this “correlation energy.” The designation is applied because
the problem arises from the necessity to consider the way in which the
probability of close encounters of electrons, particularly those of unlike
spin, is reduced by more detailed consideration of their electrostatic
repulsion.
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Wigner obtained?

0.88
== 3.4
E. 7s + 7.79 (34)
The electrostatic interaction terms then yield
0.284 0.88
Ei= (3.5)

7e s+ 1.79

With the inclusion of the correlation energy, the electrostatic interaction
is very small for sodium (about — 1 kcal/mol), and actually increases the
binding. However, this result is certainly smaller than the theoretical
uncertainties involved in the calculation. In the other alkali metals, the
same general result is obtained: the cohesive energy is primarily the
difference of the boundary correction and the average kinetic energy; the
contribution from the electrostatic interaction with the inclusion of the
correlation energy is small (and binding for all except lithium). The
comparison between theory and experiment will be given in the next
section.

Wigner obtained the expression (3.4) for the correlation energy in
the following way. He estimated a constant (independent of »,) correlation
energy — 0.11 ry/electron for small 7. At large r, (r,> 10). Wigner
introduced the hypothesis that the electrons would localize themselves
on lattice sites (a continuum of positive charge to neutralize the system is,
of course, assumed). Assuming further that the lattice would be body-
centered cubic, the correlation energy may be obtained by subtracting
from the electrostatic energy of such a system (Fuchs, 1935) the exchange
and kinetic energies. The correlation energy approaches — 0.88/r, in
the limit of large 7. The formula (3.4) is nothing more than an
interpolation between these limits.

Recently, it has been possible to make considerable improvements
in the determination of the correlation energy in both limits. The corre-
lation energy in the high density (small »,) limit has been obtained more
exactly by Gell-Mann and Bruckner (1957). They found, for #, <1

E,.=0.0622 Inr; — 0.096 (3.6)

2 Pines (1955) pointed out an error in Wigner’s formula. The corrected expression
is given in (3.4).
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The calculation of the energy of the electron lattice has also been improved
(Coldwell-Horsfall and Maradudin, 1960, Carr, 1961; Carr et al., 1961)
with the inclusion of contributions from the zero point motions
(+ 2.65/r*%) and the contribution from the anharmonic interactions
(— 0.73/7.2).

12
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Fic. 8. Correlation energy for a free electron gas. The negative of the correla-

tion energy, — E; is plotted as a function of the sphere radius #»; in the region

2.0 <{ r; << 6.0 according to the calculations of Hubbard (1958) (curve H), Pines
(1958) (curve P), Wigner (1934) (curve W), and Carr et al. (1961) (curve C).
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0.876 2.65 2.94
- 7 732 - r2

E. = 3.7

(the term in 7,72 includes the kinetic energy term in the free electron
limit, 2.21/7.2, which must be subtracted). Terms of order r;*? and
exp (— 7.”*) have been ignored. No calculations have as yet been
performed successfully which are accurate in the region of electron
densities appropriate to real materials (2 > 7, > 6).

Several authors have discussed the problem of interpolating the
correlation energy between the low density and high density limits
(Pines, 1958; Nozieres and Pines, 1958; Hubbard, 1958; Carr ef al.,
1961) from different viewpoints. The agreement between the various
interpolations (including that of Wigner) is only fair. The results are
illustrated graphically in Fig. 8.

The situation with respect to the correlation is evidently still quite
unsatisfactory. Not only must one resort to interpolation procedures
for densities of interest (and there does not appear to be any general
agreement on a ‘‘best” interpolation) but the effect of considering more
realistic single particle wave functions (Bloch waves) has not been studied.
It is to be hoped that there will be significant progress on these most dif-
ficult questions in the near future.

With the inclusion of the electrostatic interaction energy

E =0284/r,+ E,
the final expression for the cohesive energy (E_,) becomes
Eon=Ey—E,+ E; (3.8)

in which E, is the energy of the lowest valence electron state in the free
atom. Results for the alkali metals are given in the next section.

Aside from the question of the correlation energy of the valence
electron distribution, the most serious uncertainty in the calculations of
the cohesive energy are concerned with the core polarization effect, which
is a manifestation of the correlation between core and valence electrons.
The polarization effect, which was briefly discussed in Section 2.14, is
probably the principal cause of the discrepancy between the experimental
values of the ionization energy of free alkali metal atoms and the results
of self-consistent field calculations.
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In Section 2.14 it was asserted that, outside the ion core, the effect
of polarization is to add a term to the effective potential seen by the
valence electron which is proportional to »~4. Except in calculations
using the quantum defect method, it is also necessary to determine the
change in the effective potential due to core polarization, inside the core,
for small values of . It is evident that the »—* dependence of this quantity
cannot persist to 7 = 0, since an infinite contribution to the energy would
result. A more elaborate treatment of the polarization potential has
been given (Callaway, 1957a; Reeh, 1960). Under the influence of the
field of the valence electron, one-electron wave functions for the core
electrons depend (parametrically) on the coordinate of the valence electron.
This effect is calculated by perturbation theory. The energy of the core
electrons also must depend on the position of the valence electron. This
coordinate dependent energy then serves as a potential energy function
for the valence electron. After a number of approximations, a polarization
potential is derived:

4%

Vo(ry) = 722 D S 0 (x,)7; cos Ou;D(r,, ) d3r, (3.9)
, T
The function %, is the unperturbed core function for the state 7, whereas
uV is the wave function for the core state perturbed by the field of an
external electron at r,, as calculated, for instance, by Sternheimer (1954)
Explicit polarization potentials have been obtained for lithium, sodium,
and potassium.

If the same polarization potential existed in the solid as in the free
atom, there would be a substantial contribution to the cohesive energy,
particularly for the heavier alkali metals, since the valence charge distri-
bution is compressed in the solid. (This effect has been estimated at
somewhat more than one-third the observed cohesive energy in the case of
potassium.) Such a large contribution would spoil the rather good agree-
ment between observed and calculated values of the cohesive energy,
which is obtained by both the quantum defect method and the self-
consistent field approach when polarization is neglected. It has been
suggested, however, that the polarization potential is greatly reduced in
the solid compared to the free atom.? The fluctuating dipole moment

3 H. Brooks, private communication.
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in the core would be screened by a compensating deformation of the
valence electron distribution so that the effective polarization interaction
would be nearly zero on the boundary of the atomic cell. The question
of this screening of the core polarization potential is one of the most
important problems remaining in the study of the cohesive energies of
the alkali metals.

3.2 Cohesive Energies of the Alkali Mefals.
Results : Lattice Constant and Compressibility

The results of some cohesive energy calculations for the alkali metals
are given in Table XV. Calculations based on the quantum defect method
(QDM) are compared with those based on empirical potentials (EP)
(in the case of lithium and sodium) and on potentials derived from self-
consistent fields (SCF) (potassium, rubidium, and cesium). Explicit
polarization corrections are not included: these would certainly increase
the magnitude of the cohesive energy in the case of calculations based on
self-consistent fields. The two values given for the cohesive energy for each
calculation are obtained by including the extreme values of the correlation
energy from Fig. 8.

The effect of inclusion of.core polarization has been discussed in
detail for the case of potassium by Brooks (1958) and Callaway (1958a).
In the self-consistent field calculation, the polarization potential may be
treated in perturbation theory. When the potential computed from (3.9)
is used, and the change in energy is found to second order in the wave
vector k, the cohesive energy is apparently increased by 8.7 kcal/mol.
The change in energy of the lowest state of the valence electron in the
free atom has been included, but the screening of the polarization potential
in the solid has been neglected. In default of a better way to estimate this
screening, we may suppose that the polarization potential is reduced to
zero on the surface of the atomic sphere, and subtract from the computed
polarization correction a constant amount equal to the apparent value of
the polarization potential on the atomic sphere. Secondly, the value for
the free atom polarizability obtained from the calculations of Sternheimer
(1954) is probably too large, and one might better scale the polarization
potential to agree with the estimates of Van Vleck (1934). If these crude
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arguments are accepted the polarization correction to the cohesive energy
is reduced to 2.6 kcal/mol, which would not destroy the reasonably
good agreement between theory and experiment. This question must,
however, be reconsidered in a more fundamental manner.

There are two other quantities which can, in principle, be obtained
from cohesive energy calculations of the sort previously described: the
equilibrium lattice constant and the compressibility. The crystal structure
cannot be predicted if the spherical approximation to the cellular method
is used, since the actual polyhedral cell is replaced by a sphere of equal
volume. The lattice constant is found by determining the minimum of the
cohesive energy as a function of #; the compressibility is determined
from the second derivative of the energy at the minimum. At absolute
zero, the compressibility, K, is given by

1 ap @°E 1 &E
g="Var =" = G @k (310
(Here we have used the relation p = — dE/dV in which V is the volume

per atom and E is the cohesive energy per atom.) In spite of the uncertain-
ties which exist in the calculation of the cohesive energy, the prediction
of the lattice constant and compressibility is interesting because the
electrostatic interaction energy is believed to be a slowly varying function
of 7,, and hence the uncertainty in this quantity does not seriously affect
the computation.

The determination of the cohesive energy for sufficiently many
values of 7, to enable accurate location of the minimum and to permit
numerical differentiation in its vicinity would be a very laborious task
indeed. On the basis of a suggestion of Frohlich (1937) concerning the
variation of the energy of the lowest valence state in the metal as a function
of », Bardeen (1938b) proposed that the dependence of the cohesive
energy on 7, should be

E=A|ri+ Blr2 + Clrd (3.11)

It would then suffice to know the energy for three values of 7,

The second term in (3.11) represents the average kinetic or Fermi
energy of the material (in the approximation that E, can be neglected.)
The other terms are of the form proposed by Frohlich, who showed that
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NoTes FOR TABLE

2 H. Brooks, Nuovo cimento 7, Suppl., 165 (1958.

b H. Brooks, Phys. Rev. 91, 1027 (1953). The values here attributed to Brooks
were determined by interpolation between the published values.

¢ R. A. Silverman and W. Kohn, Phys. Rev. 80, 912 (1950); 82, 283 (1951);
R. A. Silverman, Phys. Rev. 85, 227 (1952).

d 7. Callaway, Phys. Rev. 123, 1255 (1961b).

¢ J. Callaway, Phys. Rev. 119, 1012 (1960a).

f J. Callaway and D. F. Morgan, Jr., Phys. Rev. 112, 334 (1958).

€ J. Callaway, Phys. Rev. 112, 1061 (1958c).

b C. S. Barrett, Acta Cryst. 9, 671 (1956. The values for lithium and sodium
refer to the bcc phase, and in the case of lithium, to a temperature of 77°K.

i The quantity P (pred) is the pressure predicted to produce the same compres-
sion as is experimentally observed at a pressure of 10,000 atm. The compres-
sions are given by C. A. Swenson, Phys. Rev. 99, 423 (1955).

J The values given are the highest and lowest (for the experimental #g)
as determined graphically from Fig. 8. (See text for discussion of correlation energies.)

kK The two values of the cohesive energy given for each calculation differ in the
correlation energy. The ‘‘extreme’ correlation energies (k, above) are used. QDM
values refer to calculations 4 and b.

I D. R. Hartree and W. Hartree, Proc. Cambridge Phil. Soc. 34, 550 (1938).

m F, S. Ham, Solid State Phys. 1, 127 (1955).

2 F. S. Ham, Phys. Rev. 128, 82, 2524 (1962a, b).

the energy of the lowest state should be given approximately, in the
vicinity of its minimum, by

Eg=—— 4% (3.12)

The quantity 7, appears as a constant of integration in the derivation of
(3.12); one finds by differentiation that the minimum of E; as a function
of 7, occurs at 7,

The approximate derivation of (3.12) has been given by Bardeen
(1938b) whose discussion is followed here. The fundamental assumption
is that the quantity y defined in Eq. (2.87) (or equivalently below) is
equal to unity

s

y=3 Ry2(rs) =1 (3.13)
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where R, is 7 times the radial wave function for the lowest valence state
in the solid. R, is normalized so that

w

R2dr =1

O, N

This assumption is fairly well justified for the alkali metals at the observed
spacings. For instance, one has y = 1.073 (Li); 1.0062 (Na); 1.122 (K);
1.082 (Rb); 1.145 (Cs).

The equation satisfied by R, is

d*R
d,,zo = [V(r) — Eg] Ry (3.14)

The boundary condition for this state is

dR R
(d—r“),=,s = (70) (3.15)

We may regard both R, and E, as functions of 7, through the boundary
conditions. Equation (3.14) may be differentiated with respect to 7.
[Let (') denote the derivative with respect to 7,.] Then

d* Ry’
dr?

= [V(r) — E)l Ry — Ey' R,

We multiply this equation by R, and integrate. Equation (3.14) is used to
eliminate V(r) — E,. We find, on using the normalization of Ry:

,dR dRy
o Re— L_r (3.16)

-

Ry may now be eliminated from (3.16): The boundary condition (3.15)
is differentiated with respect to 7,, yielding

R, 4R (R
[W T },57( r ), (3.17)
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This equation is substituted into (3.16). We obtain

dE d?R
Ey'= 0= Rolrd) (d) = Vi) — E Rl (3.18)

The assumption that y = 1 enables us to reduce this to

dE, 3
o= V) —E] (3.19)

The potential may reasonably be assumed to be coulombic in the region
beyond the core so that V(r,) = — 2/r.. When this is inserted in (3.19),
the equation may be integrated immediately to yield (3.12).

The chief weakness of this approach is the assumption that y = 1 for
the range of values of 7, of interest. Equation (3.11) is probably a suitable
interpolation formula for the cohesive energy as a function of #, provided
that the constants A, B, C are determined from cohesive energies
calculated for three different values of 7,

Brooks (1953) applied this procedure to the alkali metals. The values
of 7, he predicted are listed in Table XV. Instead of the compressibility,
K, given by Eq. (3.10), Brooks and Ham calculated the theoretical
pressure corresponding to the compression which is observed experimen-
tally at 10,000 atm (Swenson, 1955). These results are also given in
Table XV.

If we use Eq. (3.12) to give the variation of E, with 7,, assume that
the effective mass is that of a free electron, and neglect E,, we can give
an approximate expression for the cohesive energy which depends only
on the one parameter, #,. This is, with Wigner’s expression for the
correlation energy:

Eo 3 72 2.21 0.284 0.88
COh_—7+7’—53+ 752 + 7e _7s’+‘779

S

(3.20)

If the parameter 7, is known [it can be determined by finding a single
value of Ey(r,)], a simplified theory of the cohesive energy is possible.
Kuhn and Van Vleck (1950) and Brooks (1958) have discussed the
determination of the minimum value of E, by the quantum defect method.

Raimes (1952) has proposed an extension (3.20) to apply to the
computation of the cohesive energies of the polyvalent metals. Let there
be # valence electrons per atom, all of which are treated as free for the
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purpose of calculating the interaction energy. In Eq. (3.19), one inserts

V(r) = — 2n[r,, and we obtain, instead of (3.12),
3 7
Fo= "(— nt —)

To compute the total energy per atom of the valence electrons in
the solid, E,, we observe that the average kinetic energy per electron is
proportional to n*?; the exchange energy to #"?. The self-energy of the
charge distribution is proportional to # (per electron) and if the correlation
energy is a function only of the average electron density, we merely
replace 7, (as determined from the lattice structure only) by 7/n'/®
the correlation energy formula [such as (3.4)]. Since there are # electrons
per atom, another factor of # enters each term. Hence

2 2 5/3 43
Et—nz(%—— §)+ L2n? | 22105 0.9204° E(n_r”_s) (3.21)
(in which E_ is the free electron correlation energy). It is not so simple
in this case to specify the theoretical cohesive energy because of problems
concerning exchange and correlation effects in the free atom; however, the
lattice spacing and compressibility can be computed from (3.21).

In order to apply this expression, it is necessary to determine 7,
Raimes (1952) has given an appropriate expression for computing this
quantity from the appropriate ionization potential of the free atom.
He found that this extremely simplified theory is capable of accounting
for the experimental results of Bridgman on the compression of divalent
metals as a function of pressure and could give, with somewhat less
accuracy, the lattice constant and cohesive energy. He has also applied
this treatment to aluminum (Raimes, 1953).

There are, of course, ample grounds for criticism of this very simple
theory. Itis thus very interesting that it has a significant degree of success.

in

rS 752 75

3.3 Band Calculations in the Alkali Metals

A simple discussion of the general features of the band structure of the
alkali metals has been given by Cohen and Heine (1958). There have been
many detailed calculations of energy bands in these metals. Calculations
prior to 1958 have been reviewed elsewhere (Callaway, 1958a), and will
not be discussed here. The most complete set of calculations at present are
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those of Ham (1960, 1962a,b) who has applied the quantum defect method
in conjunction with calculational procedure of Kohn and Rostoker (Section
2.8). Rather careful calculations of energy bands in lithium have also been
made by Callaway (1961c) and by Schlosser (1960) (who has also studied
sodium in detail). These calculations were based on empirical potentials
and employed the OPW and augmented plane wave methods respectively.
The degree of numerical agreement between the OPW and the APW
calculations in the case of lithium is impressive, and suggests that both
methods, if carefully applied, will yield accurate solutions of the periodic
potential problem.

The band structures of the alkali metals may be classified in terms
of relative degree of departure from the free electron approximation. In
that approximation, the Fermi surface is spherical, and the effective mass
ratio is unity. All the alkali metals will depart from this idealization
to some extent. The Fermi surface in the free electron approximation
for an electron concentration of one per atom, would approach most closely
to the Brillouin zone face for the body-centered cubic lattice along the 110
axis near the point N. (The surface would be approximately 7/8 of the
distance from I" to N.) However, symmetry considerations require that
Vi E vanish at N. Further, there is a degeneracy in the free electron
approximation of states at the point N; and this degeneracy is necessarily
removed when a periodic potential is present. The splitting is in first
order equal to 2V (110) where V(llO) is the (110) Fourier coefficient of
potential. These considerations suggest that the most likely distortion of
the Fermi surface from a spherical shape would be in the form of bulges
along the 110 axes, and raise the interesting question whether the surface
might be in contact with the zone face at N.4 This contact would have
important consequences for many experiments.

4 A distortion of the Fermi surface of this sort requires important sixth order
nonspherical terms in the expansion of E(k). It cannot be described by the fourth
order Kubic harmonic only. If the expansion is written as

E() = Eg + Ey b2 + k4 (E,0) + E@ K,) + 8 (EQ) L E@ K, + EB Ky + ...
where K,, K, are Kubic harmonics (normalized to 4m), the coefficients found by
a least squares fit to the band calculation of Callaway (196lc) conceérning lithium
are E, = 0.748, E1) = 0.105, E,® = — 0.020, Es1) = — 0.545, E¢® = 0.128, and
E4®) = 0.175. The large size of the sixth order terms compared to those of fourth
order should be noted.
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A convenient indication of the distortion of the Fermi surface from
a spherical shape is furnished by the splitting of the lowest states at N:
(these are the states N; and N,’ in the notation of Table VI; N; may be
considered as approximately s-like although d functions may also be
included; N,’is p-like). Unfortunately, the question of contact cannot be
decided from knowledge of this parameter alone. In Table XVI, the
calculated splitting at N is given according to the work of Callaway and
Ham.

TABLE XVI

ENERGY GAP AT ZONE FACE FOR ALKALI METALS?

Li Na K Rb Cs

Ham (1962a,b) +0.209 (0.557) +0.018 (0.057) —0.037 (0.176) —0.063 (0.324) —0.088 (0.527)
Callaway (1958a) -+0.233 (0.598) --0.053 (0.172) —0.034 (0.152) +0.057 (0.265)
(1961c)

3 The energy gap, Eg = E(N,) — E(N,’) (in rydbergs) at the zone face is given
for all the alkali metals at the equilibrium lattice constant. The fractional gap,
defined as Eg{é[E(N]) + E(N,)] — E(]“l)}—1 is given in the parentheses.

It is evident that the Fermi surfaces in lithium and cesium are the
most distorted; sodium and potassium the least. The question of contact
has not yet been definitely settled as it is first necessary to compute
the Fermi energy (at absolute zero); this in turn requires knowledge
of the density of states. Estimates by several authors for the case of
lithium: Ham (1962a,b), Schlosser (1960), Cornwell (1961a), Callaway
(1961c), predict a close approach of the Fermi surface to the Brillouin
zone, but not contact. The calculations are sufficiently precise (within
of course, the framework of the Wigner-Seitz approximation discussed
earlier) so that the prediction of no contact is unambiguous. Moreover,
a more complete inclusion of electron interaction effects (the calculations
mentioned are all based on the one-electron: picture) will alter the pre-
dictions significantly only if the correlation effects are anisotropic or
strongly %-dependent. Probably one would have to go beyond the free
electron gas treatment of the correlation energy to change the one-electron
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results in this respect. The calculated band structure of lithium is shown
in Fig. 9.5

Some of the experimental evidence concerning the shape of the Fermi
surface has been summarized by Cohen and Heine (1958) and is in support
of the general trend as discussed above. At the time of their review
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Fic. 9. Energy bands in lithium along the (1, 0, 0), (1, 1, 0) and (1, 1, 0) axes
in the Brillouin zone. The horizontal line at —0.433 rydberg represents the Fermi
energy. Only a relatively small distortion of the Fermi surface is predicted.

conclusive experiments had not been performed. Recently the De Haas-
Van Alphen effect has been observed in potassium and rubidium (Thorsen

5 Experimental evidence supporting the assumption of contact between the
Fermi Surface and the Brillouin Zone in lithium comes from measurements of the
soft x-ray emission spectrum (Crisp and Williams, 1960). This has the shape that
would be expected if contact existed.
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and Berlincourt, 1961a,b), and cyclotron resonance has been observed
in sodium and potassium (Grimes, 1962). The Fermi surfaces in potassium
and rubidium do not seem to be significantly distorted (in sodium, single
crystals cannot be obtained at low temperatures, owing to the martensitic
phase transformation, so that anisotropy measurements have not been
made) The effective masses on the Fermi surface in sodium and potassium
are 1.24 4 0.02 and 1.21 + 0.02, respectively, from the cyclotron resonance
measurements.

The states at symmetry points closest to the Fermi surface in lithium
are p-like whereas in potassium, and in rubidium and cesium (according
to Ham’s calculation) the states are of mixed s and 4 character. The
increasing importance of d states in the heavier alkali metals is naturally
to be expected from their position in the periodic table.

Information concerning certain average properties of the Fermi
surface can be obtained from thermal and optical measurements. In
particular, low temperature specific heat measurements, which reveal the
electronic contribution, make possible a determination of a ‘‘thermal”
effective mass simply related to the area of the Fermi surface.

Luttinger and Ward (1960) have shown that the specific heat of a
system of interacting electrons at low temperatures in the presence of a
periodic potential is given by

2
’"; K2T X 8(u — Exy) (3.22)

ko

C,=

in which p is the band index, K is Boltzmann’s constant, and u is the
chemical potential (or Fermi energy). The summation can be replaced
by an integral

2
kZ'-. (2n)3§d3k.

The procedures of Section 1.8 enable us to write (per unit volume of
material)

2
C,=yT, where y= %Kz n(w) (3.23)
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n(u) is the density of states at the Fermi surface, which is given by
n() = -2 S Sy

YT RaP ) V|

Evidently a measurement of the electron specific heat determines the
density of states on the Fermi surface. If the energy bands were parabolic,

characterized by an effective mass ratio m*, we would have (in atomic
units):

(3.24a)

n(u) = m* kp/2n2, or m* = 27% n(u)/kr (3.24b)

where kg is the radius of the (spherical) Fermi surface. It is convenient
to define a “thermal effective mass, m,” through (3.24b) for arbitrary
band structures (& still being given by the usual expression for free
electrons). Then (in atomic units)

my = Oy /kp K2 (3.25)

To obtain a calculated m, to compare with the experimental value

deduced from (3.25) requires a detailed calculation of the Fermi surface,

which has been performed by Ham (1962b). A comparison of theoretical
and experimental values for m, is presented in Table XVII.

For a spherical Fermi surface, the thermal effective mass should agree
with that determined from cyclotron resonance.

TABLE XVII

THERMAL EFFECTIVE MASSES FOR THE ALKALI METALS

Li Na K Rb Cs
m, (exp) 2.19P 1.27° 1.252 1.25° 1.473
m (theor) 1.644 1.004 1.07d 1.18d 1.754
1.62¢

a Lien and Phillips (1960). See also Ham (1962b).

b Martin (1961a).

¢ Martin (1961b).

d Ham (1962b).

¢ Calculated using the band parameters of Callaway (1961c). The sixth order
terms in E(k), including those of Kubic, rather than spherical, symmetry, have
been included.
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Except in the case of cesium, the theoretical values of m, are
consistently too low. There are two effects which could account for this:
(a) warping of the Fermi surface: if there are patches of low velocity
regions on the Fermi surface the effective mass would be enhanced, or
(b) the discrepancy might be the result of the neglect of electron-electron
and electron-phonon interactions. The correction to the effective mass due
to electron-electron interactions effects can be calculated exactly only for
a free-electron gas in the limit of very high densities (Gell-Mann and
Bruckner, 1957). In that limit, the effective mass is reduced. Estimates
have been made (DuBois, 1959) which suggest that the correction changes
sign so that the effective mass is increased at higher densities. An
additional increase in the effective mass do to electron-phonon interactions
has been predicted by Quinn (1960).

There have been some calculations of energy levels in the alkali metals
which are considerably above the Fermi level (see Callaway, 1958a; Ham,
1962a). This work is rather remote, at present, from possible experimental
investigations. There is one feature of interest, however, which has
significance for the discussion of the effective crystal potential.

We have seen in Chapter I that it is possible to make a rough classi-
fication of states at symmetry points of the Brillouin zone as s-like,
p-like, etc. It is interesting to consider the relative order of levels of a
given type. It turns out that this is generally in accord with the order of
the corresponding levels in a free-electron system (the empty lattice):
If we expand the wave function for the state concerned in plane waves, the
relative order of states of a given type is rather independent of the assumed
crystal potential, and is determined primarily by the kinetic energy of the
lowest plane wave appearing in the expansion. Thus, in the body-centered
cubic lattice, if we consider the principal symmetry points I', H, P, and
N, (see Fig. 1) the s-like levels are arranged in order of increasing energy
as I, Ny, Py, H,: the P levels are arranged as N,’, P,, Hy;, (N;', N,'), I'};.
(The states N;" and N,’ are degenerate in the empty lattice.) This ordering
of the levels may be considered as a normal level order. Exceptions to
it may generally be explained as due to admixtures of significant amounts
of differing angular momentum states. The normal level order is given
in Table XVIII for s, p, 4, and some f levels in the body-centered and
face-centered cubic lattices. The reader should be aware, however, that
there is some ambiguity in this classification of levels due to this admixture.



3.3 BAND CALCULATIONS IN THE ALKALI METALS 153

TABLE XVIII

NormAL LEVEL ORDER FOR ENERGY BaNDs?

I. s band bec fee
I I
Ny L
Py X
H, K,
w,
II. » band bce fce
N, Ly
P, X
Hys K,
Ny’ degenerate in (Wy', W) degenerate in
N4'} empty lattice Wy’ empty lattice
Iy L,
I
K,
III. 4 band bcc fce
Hyy X3
Ny Ly
Iy degenerate in Iy
I, } empty lattice K,
Ny I’y
P, (X, X;) degenerate in
H,y' W, empty lattice
Ny
IV. f band Ty ry
Py Xy
Hy w,
Ny X,
Hys Iy
ry Ly

2 Levels are listed in order of increasing energy

Levels are assigned a type on the basis of the lowest angular momentum
state in the decomposition of the wave function in spherical harmonics.

In contrast to the relatively invariant ordering of levels of a given
type, the position of levels of different types does depend critically on
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the detailed crystal potential, and varies in a systematic way from element
to element. This fact may be easily explained in terms of the pseudo-
potential concept previously discussed (Sections 2.5 and 2.15), provided
that a different pseudopotential is considered for each angular momentum.

3.4 Wave Functions for the Alkali Metals

Wave functions of the valence electrons in the alkali metals have been
studied by several authors (Callaway and Morgan, 1958; Callaway, 1958c,
1960a, 1961b; Callaway and Kohn, 1962; Kohn, 1954; Kjeldaas and
Kohn, 1956; Brooks and Ham, 1958; Milford and Gager, 1961). Much
attention has been given to the problem of calculating the average over
the Fermi surface of the square of the wave function evaluated at the
nucleus (conveniently denoted as Pg). This quantity is important in
the simple theory of the Knight Shift (see Knight, 1956): The position of
the nuclear magnetic resonance line in the metallic state is shifted with
respect to nonmetallic compounds by an amount proportional (in the
simple theory) to Pr. Let AH/H be the fractional shift in the applied
field for which resonance occurs. It can be shown that

AH 8=

7 =5 X»QPr (3.26)

where
Py = [4n® nw)rlj [k, 0)[2 ([P E|)~* S (3.27)

In these equations, X is the spin paramagnetic susceptibility (per unit
volume), 2 is the atomic volume in which ¢ is normalized, »(u) is the
density of states on the Fermi surface, and the integral goes over the
Fermi surface. This formula is derived under the assumption that
electrons in closed shells do not contribute to the effective magnetic field
at a nucleus. This assumption will be discussed more fully below.

The spin paramagnetic susceptibility is known from experiment for

lithium and sodium; for the heavier alkali metals, it can be obtained only
from the theoretical estimates such as those of Pines (1955). When
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TABLE XIX

KNIGHT SHIFT RESULTS FOR THE ALKALI METALS

Li Na K Rb Cs

Pg (theor)  0.1102 0.110° 0.555° 0.664P 0.862¢ 0.91 2.160 176> 2.89f 2.47P
P, (theor) 0.2232 0.242! 0.685° 0.840' 0.743¢ 1.16! 1.967 218" 268 297

& (theor) 0.49%  0.455P 0.81° 0.790P 1.16¢  0.78% 1.100 0.81°> 1.1f 0.832P

Pg (exp) 0.1040.005¢  0.53+0.05¢  0.95%h 1.035™2 2.32dh 4.39d.h
P, (exp) 0.2311 0.7511 1.116n 2.341 3.88i
& (exp) 0.4424-0.015™ 0.7054-0.079  0.86k1 .93 0.9934. b 1.134b

NotEs 10 TABLE

2 W. Kohn, Phys. Rev. 96, 590 (1954).

b H. Brooks (unpublished), quoted by G. B. Benedek and T. Kushida, J. Phys.
Chem. Solids 5, 241 (1958).

¢ T. Kjeldaas and W. Kohn, Phys. Rev. 101, 66 (1956).

d G. B. Benedek and T. Kushida, J. Phys. Solids 5, 241 (1958).
J. Callaway, Phys. Rev. 119, 1012 (1960a).
J. Callaway, Phys. Rev. 112, 1061 (1958c).

€ R. M. Sternheimer, Private communication.

b Deduced from experiment using theoretical values of the paramagnetic
susceptibility according to the work of D. Pines, Solid State Phys. 1, 367 (1955).

I Determined from hyperfine structure measurements listed by W. D. Knight,
Solid State Phys. 2, 93 (1956).

i J. Callaway and D. F. Morgan, Phys. Rev. 112, 334 (1958c).

k E. J. Milford and W. B. Gager, Phys. Rev. 121, 716 (1961).

I H. Brooks and F. S. Ham, Phys. Rev. 112, 344 (1958).

m C. H. Ryter, Phys. Rev. Letters 5, 10 (1960).

n W. H. Jones, T. P. Graham, and R. G. Barnes, Acta Metallurgica 8, 663 (1960).

- o

calculations of P are made using the quantum defect method or the
empirical potentials of Seitz and Prokofjew, it is possible to make a
reasonably accurate prediction of Pr. In calculations using potentials
obtained from self-consistent fields for free atoms, better agreement with
experiment is obtained if one compares theoretical and experimental values
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of the ratio § = Py/P,, where P, is the square of the magnitude of the
wave function of the valence electron in the free atom evaluated at the
nucleus. An experimental value of P, may be obtained from measurements
of the hyperfine splitting (4 W) in energy units of the valence electron level
2S,jo the free atom through the Fermi formula (Fermi, 1930):

87 2I + 1
AW = ?” j piin ws Pa (3.28)

where P, = |1f,(0)|2. In this equation, x is the nuclear magnetic moment
in units of the nuclear magneton, uy is the nuclear magneton, ug is the
Bohr magneton, and I is the nuclear spin. The reason for emphasizing
the comparison of & with experiment is that many of the approximations
of self-consistent field calculations (neglect of correlation and relativistic
effects) will be nearly the same for P and P, and will tend to cancel when
the ratio is computed. Theoretical and experimental values for P, P,,
and £ are compared with experiment in Table XIX.

The evident disagreement between the values of P, as determined from
experimental measurements of hyperfine structure according to (3.28)
and those obtained from the quantum defect method is in large part due
to the inadequacy of the Fermi formula (3.28). Several corrections have
been derived, which, when applied to (3.28) give

87 2 +1 .
aw = AL i PARGD0 — 0 (L =) (3.20)

The most important correction is the function

s
Fi(j,2) = 4;((74; 2_)(‘71;:/—21) s =1+ —arZ%)2 (3.30)
derived by Breit (1930) and Racah (1931) to include relativistic effects
in a coulomb field. In Eq. (3.30), Z is the nuclear charge, 7 the total
electronic angular momentum, and « is the fine structure constant e2/hc.
The remaining factors of (1 — d) and (1 — &) are included to an account
of the finite size of the nucleus (Rosenthal and Breit, 1932; Crawford
and Schawlow, 1949) and the distribution of the magnetic dipole moment
over the nucleus (Bohr and Weisskopf, 1950). With these corrections,
the experimental values of P, become 0.231 (Li), 0.741 (Na), 1.07 (K),
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2.06 (Rb) and 2.92 (Cs), in much better agreement with the calculated
values. A similar correction evidently must be applied to the Knight
shift formula (3.27).

In spite of the relatively good agreement between theory and exper-
iment in many of the calculations summarized in the Table XIX,
particularly in respect to the parameter &, there is an important,
unanswered question: Since the atom has a net spin, the exchange
interaction between the valence electron and the core electrons leads
to a polarization of the closed shells. This effect causes the charge distribu-
tion of the electrons in closed shells, whose spin is parallel to that of the
valence electron, to be different from that of the electrons of opposite
spin.  Clearly the net spin density at the nucleus is altered by
this interaction; and it is not evident whether the spin density will be
increased or diminished by the interaction. This exchange polarization
is different from the core polarization previously described, and can be
described in the “Unrestricted Hartree Fock Method” mentioned in
Section 2.12.

Exchange polarization effects are apparently of extreme importance
for transition metals: measurements based on the Mossbauer effect
have shown that the sign of the net spin density may even be
changed from the expected value (Hanna ef al., 1960). The effect was
discussed for the alkali metals by Cohen et al., (1959). They found an
additional contribution to Py amounting to 25%, in the case of Li and
59, for Na. The agreement between theory and experiment is lessened
by these considerations. The relatively small correction for Na is a
consequence of cancellation of opposite polarizations of the 2s and 1s
electrons. Calculations of this effect have not been reported for K, Rb,
or Cs. A substantial correction may be present in any or all of these
cases.

3.5 Valence Crystals: Diamond, Germanium, and Silicon

The rapid development of semiconductor technology which followed
the invention of the transistor gave great impetus to programs of research
into the fundamental characteristics of the most important semiconductor
materials: germanium and silicon. A very large amount of information
has been obtained about the band structure of these materials from
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both experimental and theoretical sources. Particularly detailed
experimental information is available concerning the band structure in
the immediate vicinity of the maximum of the valence band and the
lowest minimum of the conduction band. In general, the success of band
theory in correlating the results of numerous experiments concerning
semiconductors is perhaps the most striking verification of applicability
of the general principles and language of band theory. Attempts at
quantitative prediction of the basic parameters have not been so successful.

There have been many calculations of energy bands in these materials:
[Diamond: Kimball (1935); Hund and Mrowka (1935a); Morita (1949a,
1958); Herman (1952); Herman (1954c); Hall (1952); Schmid (1953);
Zehler (1953); Slater and Koster (1954); Kleinman and Phillips {1959,
1962); Bassani and Celli (1961); Nran’yan (1961). Silicon: Mullaney
(1944); Holmes (1952); Yamaka and Sugita (1953); Bell et al. (1954);
Jenkins (1956), Kane (1956a); Woodruff (1956); Bassani (1957),
J. C. Phillips (1958); Kleinman and Phillips (1960b); Quelle (1962);
Brust, Cohen, and Phillips (1962); Kleinman (1962); Bassani and Brust
(1963). Germanium: Herman and Callaway (1953); Herman (1954b, c);
Segall (1958), Gashimzade and Khartsiev (1961), Liu (1962), Brust,
Phillips, and Bassani (1962); Bassani and Yoshimine (1963).]¢

Before the detailed discussion of the band structure is undertaken,
it is desirable to consider some of the qualitative aspects. Germanium
and silicon have the same lattice structure as diamond. The diamond
lattice is composed of two interpenetrating face-centered cubic lattices:
the structure is face-centered cubic but with two atoms in each unit cell:
If a is the lattice constant of one of the face-centered cubic lattices, atoms
are placed not only at the sites of this lattice %a(l} + mi + nlA{) where
{, m, and #» are integers whose sum is an even integer, but also at points
displaced from the first set by ia(i -+ i + l;) The theory of the symmetry
properties of wave functions in the diamond lattice is necessarily more

complicated than that for the ordinary face-centered cubic structure
because the space group is not simple: it contains a screw motion. The

8 Some of the calculations listed above concern more than one of the crystals
mentioned. In cases in which two or more papers concern the same calculation,
the more detailed account is included here.
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Brillouin zone is the same as for the ordinary face-centered cubic structure.
The representations at symmetry points have been worked out by Herring
(1942) and for the double group by Elliott (1954).

It is simplest to consider the wave functions in the language of the
tight binding approximation: We consider Bloch functions formed from
the s and #,, p,, and p, orbitals belonging to atoms on each of the lattices.
One then obtains an 8 x 8 secular equation. It is found that the solutions
fall into two groups of four bands each; the lowest group or valence
band, capable of holding four electrons from each atom, is separated by
a gap from the higher group, or conduction band. The wave functions
may be roughly characterized by saying that the valence band is formed
from bonding combinations of the orbitals on the two sublattices, the
conduction band from antibonding combinations of functions. This
description is exact in the tight binding approximation only at k = 0,
however, where the solutions are: (1) a combination of s orbitals
symmetric about the midpoint of a line joining two atoms (state I,
bottom of the valence band); (2) a similar symmetric combination of
p orbitals (this state (I'y;') is triply degenerate (spin degeneracy is not
included) since there are three p orbitals from each atom, and is at the
top of the valence band); (3) a triply degenerate state (I3;) which is
an antisymmetric combination of p orbitals; and (4) an antisymmetric
combination of s orbitals (Iy’). In diamond and silicon, I, lies below
Iy, but this order is reversed in germanium. When spin orbit coupling
is included the states I',;" and I, are split into a doubly degenerate and
a nondegenerate level (fourfold and twofold degenerate if the spin
degeneracy is included); the nondegenerate level is lowest. Although
the valence band maximum is located at k = 0, the conduction band
minimum is elsewhere: along the 100 axis (but not at the square face
center X, since the bands need not have zero slope there) in diamond
and silicon; at the hexagonal face center (L) in germanium.

Away from the center of the zone, the wave function in the tight
binding approximation mixes s and p functions on the different sublattices
It is characteristic of lattices with more than one atom in the unit cell
that a wave function may possess different symmetries about each of the
atoms. On the 100 axis (direction k,) the wave function of 4, symmetry
combines the s and p, functions (separately) on the two atoms in a sym-
metric way, whereas for 4,’, the same functions are combined in an
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antisymmetric manner. The ratio of the coefficients of the s and p
combinations is, of course, a function of k and has to be determined by
solving the band problem. The other band that is formed on this axis
is Ay, which is doubly degenerate. This function contains a combination
of the p_ and p, orbitals (p, + p, or p, — p,) mixed with a similar function
obtained from its neighbor in the unit cell. At the face center X(100),
all wave functions are doubly degenerate. In X;, an s function on one
atom is combined with a p, function on another. The A band goes into
X,. At the point L the wave function for the state L, is composed of a
combination of s functions with p functions having the symmetry
x + v + z which is symmetric between the two atoms. In the case of
L,’, the combination is similar but antisymmetric. There are also the
doubly degenerate states L, and L," for which the wave function is
(respectively) a symmetric or antisymmetric combination of functions
on the two atoms having symmetries ¥ — y and z — }(x + ).

To obtain quantitative results for the energy band structure, even
in an interpolation scheme, it is necessary to use procedures other then
the tight binding approximation. J. C. Phillips (1958) observed that the
energy bands may be characterized readily in terms of small number of
parameters if a plane wave approach based on a pseudopotential is used
(see Section 2.5). The disposable parameters are then the Fourier
coefficients of the pseudopotential.

Before proceding further, it is desirable to consider the available
experimental information concerning the band structures We will discuss
silicon and germanium in detail. The information has been summarized
and interpreted by Phillips (1962). Much less is known concerning
diamond, but the energy bands in this material are believed to resemble
those of silicon.

The lowest minimum in the conduction band in silicon lies on the
100 axis, approximately 0.85 (4 0.03) (Feher, 1959) of the distance from
the center of the zone to the square face center X. The surfaces of constant
energy in the conduction band are a set of six (one on each axis) ellipsoids
of revolution. These ellipsoids are characterized by a transverse and a
longitudinal effective mass: m,/my = 0.192 4 0.001; m, /my=0.90 + 0.02
(Rauch et al., 1960). The surfaces are thus somewhat cigar shaped. The
energy gap between the valence band maximum at k = 0 and these (100)
conduction band minima is about 1.17 ev at absolute zero (Macfarlane
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et al., 1958). The (vertical) band gap at k = 0 is not known with great
accuracy: it seems to be about 3.5 ev.

The description of the valence band is somewhat more complex.
If we neglect spin orbit coupling, the valence bands at k =0 are
determined by second order degenérate perturbation theory (see Section
1.7) as solutions of the secular equation:

LE2+ M2+ k) —E Nk, k, NE,k,
Nk, k, Lk2+ M2+ k2 —E Nk k,
Nk, k, Nk, LE2+ M(E2+ k2) —
=0 (3.31)

The quantities L, M, and N are sums of squares of certain matrix elements
(these will be given below). If spin orbit coupling is taken into account,
the E(k) expressions become (sufficiently close to & = 0):
Eio(k) = Ak? 4 [B2k* + C3(k,2 k2 + k2 R,2 4+ R,2R,H) V2 (3.32)
Egk) = — A + Ak?

Here 4 is the spin orbit splitting (about 0.04 ev). The cyclotron reso-
nance measurements give (Hensel and Feher, 1963; Phillips, 1962)

A=—4284002, B=—07+005  |C|=525+0.08

The constants 4, B, and C of Eq. (3.32) are related to the parameters
L, M, and N of (3.31) by the equations (Dresselhaus, 1954; Dresselhaus
et al., 1955).

A=1+(L+2M)3

B2 = [(L — M)[3] (3.33)
€= ¢ [N*— (L — M)

The relation between L, M, and N and the basic matrix elements
is as follows: Let (I'}(0)| stand for a state in I’ at the top of the
valence band (basis functions are given by Dresselhaus, 1954). Define

I‘l(l), ]1 2




162 CHAPTER 3. BAND STRUCTURE OF MATERIALS

The sum runs over all states belonging to I, these states being char-
acterized by the index I; E(0) is the energy of I;'(0), etc. Similarly,
define

R v [(TE(0)pa| Ta(0))]2
C= 2 E() — Etz D
(T5510) [p+| Tus))[?
H,— m2 l 50) — E(?) (3.34c)
Z \(Fzs' (0) V’ ‘Fzs >|2 (3.344)

E@) — E@)

The relations between the quantities L, M, and N and the sums of matrix
elements of (3.34) is:

L=F 412G
M=H, +H, (3.35)
N=F—G+H,—H,

Evidently, it is not possible to determine F, G, H,, and H, unambig-
uously from the experimental data. One might try to neglect H, on
account of the supposed remoteness of the nearest I'y; level. Then one
deduces (Phillips, 1962) F = — 5.5, G = — 0.7, H, = — 4.5.

The valence band in silicon can be crudely described, with regard
to gross structure, as composed of the superposition of a wide band
formed from combinations of s and p states, capable of holding two
electrons per atom and a more narrow band based on the remaining
p functions. (This description is exact in the tight approximation along
the 100 and 111 axes.) The over-all width of the valence band has been
estimated as 16.7 ev from x-ray measurements of Tomboulian and Bedo
(1956), and as in the range from 13 ev to 16 ev by Kern (1960). The lack
of precision of x-ray measurements in these respects is notorious. The
width of narrower $ subband has been estimated at 5.1 ev by Hagstrum
(1961) from measurements of the energy distribution of electrons emitted
in the Auger-type electron transitions which occur when an ion is neu-
tralized at a solid surface. He also finds that the over-all width of the
valence bands is in the range of 14 to 16 ev.
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The band structure of germanium is similar in many qualitative
respects to that of silicon. The lowest minimum of the conduction band
occurs, however, at the extremities of the 111 axes (hexagonal face
centers) L (representation L,). Since these points are equivalent in
pairs, the energy surfaces of electrons consist of four ellipsoids of revolution
along the 111 axes. These ellipsoids are characterized by effective mass
ratios: my[my = 1.588 4 0.005, m [m, = 0.08152 + 0.00008 (Levinger
and Frankl, 1961). The L; minima are located 0.744 - 0.001 ev above
the I',;' state. The lowest energy level in the conduction band at k = 0
has I'y’ symmetry and lies 0.897 4 0.001 ev. above I, at 4°K. The
constant energy surfaces near this minimum are spherical, characterized
by an effective mass mfm, = 0.041 4 0.002 (Zwerdling et al., 1957).
The small effective mass near this minimum is due to the proximity
of the Iy’ level and, conversely, implies the existence of light holes
in the valence band. In contrast, the vertical energy separation between
the conduction and valence bands at L is larger (about 2.2 ev). Evidence
has also been obtained from measurements of the pressure dependence
of the resistivity, and from optical measurements for the existence of a
third set of minima in the conduction band lying 0.15 to 0.20 ev above
the L, minima, along the 100 axis (Paul, 1959). These minima are
analogous to those found in silicon, probably with a similar ratio of
m,/m, ~ 5 (Glicksman and Christian, 1956).

The valence band in germanium can be characterized in a fashion
similar to that in silicon. The parameters involved are, according to
Levinger and Frankl (1961; see also Stickler, 1962),”

A = —13.27 £+ 0.025; |B| = 8.63 4 0.12; IC| =12.4 £0.25

If one neglects the matrix element sums of the type H,, one obtains
F=—292, G=—12, H =-56

The relative magnitudes of F and H, are consistent with the I',’ state
being lowest in the conduction band at the origin. The spin orbit
splitting of the valence band is substantially larger than in silicon: about

7 Neither in the case of germanium or silicon is there complete agreement
concerning the valence band parameters. For example, Stickler, Zeiger, and Heller
(1962) give 4 = 13.2, |B| = 8.2 and |C| = 13.3 for germanium; and 4 = 4.22,
|B| = 1.0, and |C| = 4.34 for silicon.
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0.29 ev (Kahn, 1955). The over-all width of the valence band is given
as 7.0 ev by Tomboulian and Bedo (1956); however, Hagstrum (1961)
obtains a width in the range 14-16 ev, as in silicon, with the upper
bands occupying 4.3 ev.

Alloys of germanium and silicon have band structures intermediate
between those of the elements composing them (Johnson and Christian,
1954; Herman, 1954a; Dresselhaus et al., 1955b). Conduction occurs
by migration of electrons in the 111 (L;) minima of the conduction band

TABLE XX

ENERGY LEVEL SEPARATIONS IN GERMANIUM AND SILICON?

LS’ - Ll LBI - L3 F25, - F15 X4 - Xl

Silicon 3.1 5.4 3.4 4.3
Germanium 2.1 5.7 3.2 4.3

2 All energies are in electron volts.

in germanium. Although the 100 minima exist, they are too high above
the 111 minima to be populated. The addition of silicon can be con-
sidered, in the language of Phillips’ pseudopotential theory and the virtual
crystal approximation, to introduce a weak, essentially repulsive potential.
This perturbation causes the bands to rise, and the band gap increases.
In particular, s states rise faster than p states as the concentration of
silicon is increased, so that Iy’ crosses Ij;. The 111 minima rise faster
than the 100 minima. In the range of composition in which 8 to 209,
silicon is present, conduction takes place as a result of carriers present in
both the 100 and 111 minima. For higher concentrations (20 to 100%, Si),
only the 100 minima are populated. Thus, there is a continuous transition
between the energy bands in germanium and those in silicon. It is no
doubt quite significant for the theory of alloys that these simple ideas
seem to be successful.

It has recently become possible to determine the approximate positions
of levels at symmetry points in the Brillouin zone which are a few electron
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volts away from the lowest band edges. This is accomplished through
the association of peaks observed in the optical absorption of the
semiconductor in the visible and ultraviolet spectral regions with inter-
band transitions between these states. The relevant measurements are

Ly

Xq

ENERGY (ELECTRON VOLTS)

-12F L2l

-14r

N
[l axis k 00 axis

Fic. 10. Energy bands in silicon are shown along the (1, 0, 0) and (1, 1, 1) axes.
Spin orbit coupling is neglected.

those of Philipp and Taft (1959, 1960), Tauc and Abraham (1961), and
Cardona and Sommers (1961) relating to germanium, silicon, and
germanium-silicon alloys. Similar information can be obtained from
studies of the photoemission of electrons (Spicer and Simon, 1962).
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The observation of spin orbit splitting of some of the peaks has been
particularly helpful in identifying the transitions. The energy separation
of some important levels in silicon and germanium is given in Table XX

10
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Fic. 11. Energy bands in germanium are shown along the (1, 0, 0) and (1, 1, 1)
axes with spin orbit coupling included. Representations are labeled in the notation
appropriate to the double group (Elliott, 1954); the labels in parentheses indicate
the single group designation which would apply if spin orbit coupling were neglected.

according to Ehrenreich, Philipp, and Phillips (1962), Brust, Phillips
and Bassani (1962), and Brust, Cohen, and Phiflips (1962). The spin orbit
splitting of the transitions at L is about 0.2 ev. Similar measurements
have been made on some 3-5 and 2-6 semiconductors.
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The energy band structures of silicon and germanium are shown in
Figs. 10 and 11, as deduced from the available experimental and theo-
retical information.

3.6 Valence Crystals: Results of Calculations

The complicated shape of the Wigner-Seitz cell for the diamond
lattice, and the necessity to consider functions with different symmetries
about each of the two atoms in the unit cell, have favored the use of
calculational procedures based on plane wave expansions for energy
band calculations in these materials. Some studies have, however,
employed the cellular method with modifications (Bell et al., 1954;
Jenkins, 1956), or the Kohn-Rostoker method (Segall, 1958).

In a calculation briefly mentioned in the previous section, Phillips
(1958) [see also Bassani and Celli (1961); Brust, Cohen, and Phillips
(1962); and Brust, Phillips, and Bassani (1962)] has attempted to use
experimental information concerning the band structures of silicon and
germanium to determine the parameters of an interpolation scheme and
thus to characterize the band structure throughout the zone. The
interpolation scheme is a plane wave calculation in which the Fourier
coefficients of potential are regarded as disposable parameters.

The values of the Fourier coefficients chosen by Brust, Bassani and
Phillips (1962) were (in Rydbergs)

V(,1,1) = —0.21; (2, 0,0) = 0.04,
V(3,1,1) = 0.08 (3.36)
V(K)=0 for a2K?/4n%>11

where (1, 1, 1) stands for any of the eight reciprocal lattice vectors of the
type (2nja) (4 1, 4= 1, £ 1) etc. These parameters are determined to
match approximately the experimental values of the separation between
valence and conduction bands at I', X, and L given in Table XX. The
parameters given above yield values of 3.4, 4.0, and 3.1 ev. for these
quantities. The smallest indirect gap is 0.9 e.v.

When the parameters have been determined, it is possible to compare
other features of the computed band structure with experiment. In
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general, the agreement is reasonably good. Earlier work by Phillips
(1958) with somewhat different parameters showed that the minimum
of the conduction band occurs for % ; [kx = 0.88 + 0.02; the effective
mass ratios of electrons were found to be: m,/my; = 0.98; m,/m, = 0.30.
The valence band parameters were 4 = — 3.9; |B| = 0.9, |C| =3.6;
H, = —58 F=—17 and G = — 0.7. The description of the band
structure by the plane wave pseudopotential method is in much better

agreement with experiment than is obtained with the use of the tight
binding approximation (see Slater and Koster, 1954) and more satisfac-
tory theoretically in that the number of disposable parameters required
is much smaller.

Phillips, Bassani and Celli, and Brust, Phillips and Bassani have also
applied this approach to germanium. The pseudopotential parameters
given below are those of Bassani and Celli (1961). In this case different
values of the average crystal potential V' (0) were included for s-like and
p-like states (these are denoted by V (0) and V(0) respectively).

V,(0) = — 0.60, V,(0)=—064, V(1,1,1)=—1023, V(2,2,0)=0.00,
V(3,1,1) =0.055 (3.37)

The parameters were chosen to give reasonable agreement with the
experimentally determined separations of the levels (see Table XX).
Values found for these quantities were: I, — Iy, 0.6 ev; L, — Ly,
18 ev; Iy — Iy, 36ev; X, — X;,36ev; Ly — Ly, 54ev. In the
earlier calculation of Phillips (1958), the effective mass ratios at L were
computed to be m/my=127; m/my=0.15. The valence band
parameters are also computed to be 4 = — 7.6, |[B| = 5.0, and |C| = 8.4.
The agreement with experiment is reasonably good considering the small
number of parameters employed. Bassani and Brust (1963) have extended
the pseudopotential calculations by considering the band structure of
Ge-Si alloys and the change in band structure under pressure.

The calculations which have attempted to determine the band struc-
ture form first principles have been extremely laborious, and quantitative
success has been hard to obtain. We will consider first the work of Herman
(see Herman and Callaway, 1953; Herman, 1954b; Herman and Skillman,
1960), who has employed the OPW method in a continuing effort to
determine theoretically the band structure of germanium. Several
important difficulties were encountered: most important perhaps is that
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concerned with the inclusion of the exchange interactions of the valence
electrons. Problems of self-consistency also arise both in connection with
the exchange interaction and in the determination of the average
electrostatic potential. These questions are particularly serious since
the quantitative characteristics of the band structure seem to be quite
sensitive to the crystal potential. Herman has employed the average
exchange potentials suggested by Slater (in his 1954c paper an arithmetic
average of two of Slater’s formulas was used).

Herman has also experienced difficulty with the application of the
OPW method: it is essential, as was pointed out in Section 2.4 that the
core functions be eigenfunctions of the same Hamiltonian that is used
in the calculation of valence electron wave functions. In the early work
(Herman, 1954c), the core wave functions were obtained by orthogonal-
izing Hartree (self-consistent field, without exchange) functions for the
free germanium atom. The core energy levels were determined from
experimental x-ray data. It is clear that this procedure is not consistent
with the requirements of the OPW method. In more recent work (Herman
and Skillman, 1960) the situation has been greatly improved by recalcula-
tion of the core functions. Unfortunately some ambiguities still remain
which may be real limitations on the applicability of the OPW method:
these include the question of the nonspherical (cubic) components of the
crystal potential; and the determination of the average crystal potential
[V(0)]. The relative positions of the calculated energy levels appears
to be sensitive to the choice of V(0). This sensitivity must result from
an erroneous application of the OPW method: A change in the crystal
potential by a constant amount also changes the energies of the core
states by the same constant. Inspection of the OPW matrix elements
as given in (2.52) and (2.53) shows that the energies of the valence states
are changed by the same amount, so that the relations of the energy
levels to each other are unchanged.

Herman’s (1954c) calculation correctly predicted that the lowest
conduction band level at the center of the zone should be Iy (instead of
I'}; as previously obtained by Herman and Callaway, 1953), but the
(1,1, 1) conduction band minima (L,) was found to be more than 1 ev
above [7'.

In a series of papers, Kleinman and Phillips (1959, 1960a,b, 1962)
Phillips and Kleinman (1962b) have studied the band structure of
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covalently bonded semiconductors. We shall be particularly concerned
here with their calculation of energy bands in silicon. This work
may be regarded as an extension of the semiempirical calculations
previously described in which an attempt is made to calculate the
effective repulsive potential from the OPW method rather than
to determine coefficients from experimental data. The interpretation of
the OPW method in terms of an effective repulsive potential has been
discussed in Section 2.5. For the convenience of the reader, the formulas
are reproduced here: The energy levels are obtained as the solutions of
the equation

(— 2+ v+ Vp)'l)k,' = Ey; vx; (2.65)

in which v, transforms according to the sth irreducible representation
of wave vector k and is a smooth function. V is the “real crystal
potential,” and V,, is given by

Vp= Z akn(Exn — Exi) (5:" (2.64)

in which ¢, is the core wave function for state #, and energy E,; and

e = — Etﬁltn(l‘)l’ki(l‘) d3r (2.62)

The determination of the repulsive potential V', requires knowledge of the
final wave function v, and energies E,;; and this requires a self-consistent
calculatipn. Further, one must note that Vp will, in general, have a
significant angular dependence. Kleinman and Phillips argue, however,
that it is possible to make a sufficiently accurate estimate of the repulsive
potential, and that the angular variation may be neglected. To do this,
they assume that in the region where the valence function v overlaps
the core functions, it may be represented as a simple hydrogenic function
C,exp (— a,7) for the s part and C,exp (—a,#) for the p part. They
calculate a repulsive potential for s and p states separately, and then assign
a percentage of s and p repulsive potential to be used for each state based
on an estimation of the s and p contribution to the diagonal matrix
elements of the OPW method for symmetrized combinations of plane
waves. The coulomb potential of the core was taken from a Hartree type
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(no exchange) calculation for Si4t (McDougall, 1932). The core-valence
exchange potential was obtained by extrapolating such a potential
previously calculated for aluminium by Heine (1957c). The coulomb
potential produced by the valence electrons was calculated from Poisson’s
equation under the assumption that the valence wave functions in the
crystal could be represented as a superposition of the smooth functions
above made orthogonal to core electron wave functions. The mutual
exchange potential of the valence electrons was included through Slater’s
free electron approximation (modified to take approximate account of
correlation effects: see Kleinman and Phillips, 1959). It was assumed
in calculating these potentials that each atom has effectively 17/8
electrons and 15/8 s electrons.

An attempt was made to obtain a reasonable degree of self-consistency
in the calculation of the potential in the following manner: Equation
(2.29), which relates the Fourier coefficients of the crystal potential to
those of the charge density may be generalized to:

8n

BZ

V(Ky) =

in which p(K,, k) is the amplitude of the K,th Fourier coefficient of
the charge density for all electrons in the Brillouin zone with reduced
wave vector k, and the integral goes over the first Brillouin zone (volume
7,). Kleinman and Phillips show that the integral in (3.38) may be
approximated by a sum of contributions from the states I}, I'y;’, L;, L,’,
Ly, X;, and X, with the weights }, 8,4, 4,1,1, and £, respectively
(considering only a single point L and a single point X). The total valence
coulomb potential was computed by writing the wave function in the
smooth exponential form previously mentioned and adjusting the
parameters until V' (1, 1, 1) computed from them agreed with ¥ (1, 1, 1) as
computed from approximating the integral (3.39), using the leading
symmetrized combination of plane waves to obtain p(K,, k).

The procedure of Phillips and Kleinman has been given in detail
here to enable the reader to appreciate the complexities of band
calculations. The adequacy of the approximations employed is not self-
evident, however, and a very large amount of work remains to be done
before any particular procedure for the determination of the crystal
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potential can be regarded as established. Neither is it evident that the
approximate form of the OPW method employed by Kleinman and
Phillips is sufficiently accurate. These authors have given arguments,
however, to indicate that the errors are small. Further, the fundamental
questions of principle involved in the calculation of the exchange interac-
tions of band electrons are still present. Phillips and Kleinman (1962)
have considered the screening of the exchange interaction between band
electrons through the introduction of a k-dependent dielectric constant.

The indirect energy gap obtained in this calculation was found to
be about 1.5 ev. The valence band parameters 4, |B|, and |C| were
computed to be — 4.4, 0.84, and 4.1 in reasonable agreement with the
experimental values; however, only the “smooth part,” ¢, of the wave
functions were included in the calculation of the matrix elements. The
effective mass ratios for electrons were also found to be m*/m, = 0.97
and m,/my = 0.205, in good agreement with experiment. Kleinman
(1962) has extended these calculations to determine the deformation
potential in silicon.

We will not discuss the other calculations of the energy band structure
from first principles in detail here. It suffices to point out that they
have encountered difficulties similar in many respects to those of Herman
and of Kleinman and Phillips; the results have generally not been in any
better agreement with experiment.

There is, however, another sort of semiempirical study of energy
bands which differs from that of Phillips in that emphasis is placed on
determining accurately the form of the bands near k = 0. This approach
has been pursued by Kane (1956a,b, 1959a) and Dresselhaus (1954;
Dresselhaus et al., 1955). The equation for the periodic part of the Bloch
function, #;, which is defined by

R

may be determined from (1.67) to be
[Hy + Hy]ux = Ex ux (3.39)
where H; is the periodic, one-electron, Hamiltonian (relativistic effects

other than spin orbit coupling are neglected in both H, and H,)

_r L
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and

h 12
H, =—k- ——6- [VV x k 3.41
=KD e PV X K] (3.41)
Since the spin orbit coupling term in (3.40) is only appreciable near a
nucleus where PV is large and the potential is nearly spherically
symmetric, this termn may be written in the more familiar atomic form

R 14V

dm2c2y de.c

In a study of the valence band structure in germanium and silicon,
Kane (1956a) chose basis functions #, which were eigenfunctions of H,,
(including spin orbit coupling). The k- p term in (3.41) was treated as
a perturbation, and the o+ [V X k] term was neglected. On the basis
of these functions, the energy bands near k = 0 are given as the solution of
a 6 X 6 secular equation which replaces (3.31), but contains only one
additional parameter: the spin orbit splitting at k = 0 (previously called
A). (For details, see Kane 1956a.) The resulting energy bands differ from
those given by Eq. (3.32) because of the more accurate inclusion of spin
orbit coupling. Kane solved the secular equation for the 100, 110, and
111 directions, and found that the energy bands depart significantly from
parabolic form. The deviations from parabolic behavior occur in a range
in which the energy, measured from the top of the band, is of the order
of the spin orbit splitting of the Iy’ level. Departures of the bands from
parabolic form are also caused by higher order mixing of valence and
conduction band levels. These effects are, however, smaller than those
produced by the spin orbit coupling.

Liu (1962) has calculated the spin orbit splitting of the energy bands
in germanium and silicon in a more fundamental way. The matrix elements
of the spin orbit coupling between the members of a degenerate set of
states (such as I'y;') were determined by representing the wave functions
for these states as combinations of orthogonalized plane waves. The
matrix elements of spin orbit coupling between orthogonalized plane
waves are dominated by the core portion of the OPW’s and this may be
determined if the core functions and the orthogonality coefficients are
known. Good agreement with experiment was obtained.
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3.7 Zinc Blende Structures

The zinc blende structure is quite similar to the diamond lattice.
The difference is that the two atoms in the unit cell are not identical
Band calculations for some materials with this structure have been
reported by Kobayasi (1958), Birman (1958), Shakin and Birman (1958),
Birman (1959a, b), Kleinman and Phillips (1960a), Gubanov and Nran’yan
(1960), Nran'yan (1960, 1961), Bassani and Celli (1961), Gashimzade
and Khartsiev (1961), and Bassani and Yoshimine (1963). We will consider
only indium antimonide and gallium arsenide in detail. The experimental
information relevant to the band structure of several 3-5 compounds has
been reviewed by Ehrenreich (1961). In indium antimonide, both the
lowest minimum of the conduction band and the maximum of the valence
band occur at k = 0. The energy gap at k=0 (0.2357 ev at 0°K;
Zwerdling et al., 1961) is smaller than the spin orbit splitting of the valence
band (probably 0.9 ev). The small energy gap means that the electron
effective mass is quite small (m*/m, = 0.013). Kane (1956b) has analyzed
the band structure near k = 0 in a calculation which is similar to his
studies of germanium and silicon which were discussed in the previous
section. In this case, it is important to treat the interaction of the lowest
conduction band and highest valence bands exactly. This may be done
by diagonalizing the matrix representing the perturbation k-p on the
basis of these states, and including also the spin orbit coupling.

The band system in indium antimonide and many other semicon-
ductors of the zinc blende structure resembles that of the group IV ele-
ments with the diamond structure in many respects. The principal
differences result from the lack of inversion symmetry (Dresselhaus,
1955; Parmenter, 1955). It was shown in Section 1.11 that in the absence
of magnetic fields ¢y and o, J* are eigenfunctions of the Hamiltonian
for the same energy. The second solution belongs to wave vector — k,
so that we must have E(k) = E(— k) (Kramer’s theorem). If there is
inversion symmetry, the periodic part of the Bloch function must satisfy
#_y(r) = u(— 1), so that all states are doubly degenerate. If inversion
symmetry is lacking, the condition #_,(r) = u,(— r) is not satisfied, so
that a double degeneracy is not required. In this case, the degeneracy of
states at symmetry points may be removed either in first order or in
third order.
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The term o- [V'V x k] in H, (Eq. (3.41)), combined with the lack
of inversion symmetry destroys the requirement present for the diamond
lattice that all the bands be flat at k = 0. In particular, bands formed
from Iy, which is situated at the top of the valence band, will not have
zero slope. Kane finds that the linear terms move the maximum of the
valence band away from the zone center to points on the 111 axis about
0.3%, of the distance to the zone face. The energy of the maximum was
estimated to be about 104 ev above the energy at k = 0. The linear
term may, however, be more important in the band structure of compounds
such as InAs in which the difference in atomic number between the
constituents is greater (Stern and Talley, 1957). The small band gap
implies the existence of a light hole band (m* = 0.015). The heavy
holes have a mass about m* = 0.25.

The small effective mass of electrons in indium antimonide implies
that the density of states in the conduction band is quite low. Con-
sequently, the conduction band becomes filled quite readily in #-type
material, and the conduction electrons soon become degenerate as the
electron concentration is increased (Burstein, 1954). The effective mass
should decrease with increasing energy since large k4 terms are present.
In third order in %, the spin degeneracy of the conduction band should
be split except along the 100 and 111 directions. Subsidiary conduction
band minima should exist at the extremities of the 111 and 100 axes
(since the double degeneracy at X present in Ge isremoved in this structure.

In spite of the differences in band structure produced by the lack
of inversion symmetry, there are also important similarities between
the band structures of elements of group IV and corresponding compounds
with the zinc blende structure. Consider, for instance, the relation between
the conduction band in germanium and that in gallium arsenide. If we
assume that the effective mass (m*) of electrons in the k = 0 conduction
band is due solely to the interaction of that band with the valence bands
at k = 0, and that the momentum matrix elements are the same in
the two materials, we can write:

m*(GaAs)  Eg(GaAs)
m*(Ge)  Eg(Ge)

(3.42)

where E is the band gap at k =0. If we use E;(GaAs) = 1.51 ev
(Sturge, 1962) Ea(Ge) = 0.90 ev; m*(Ge) = 0.04, we obtain m*(GaAs)
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= 0.067 in fair agreement with the experimental value m* = 0.072
(Ehrenreich, 1960). The calculation can be improved by taking into
account the spin orbit splitting of the valence band (Moss and Walton,
1959 ; Ehrenreich, (1961). The point is that one of the three valence bands
with which the conduction band interacts is located at an energy (E; + 4)
below the conduction band (where A is the spin orbit splitting). If we
apply Eq. (1.41b) to this case, and assume that the momentum matrix
elements connecting each valence band with the conduction band are
the same, we find

e A4 (2 1 Eg
W:l+l€(g*(3+3Eg+A) (3.43)

where 4 is a constant. This relation with the same 4 for all materials
is able to describe the dependence of effective mass on energy gap with
considerable accuracy for InSb, InAs, GaSb, GaAs, InP, and germanium.
A has the value 20 ev with a spread of about 20%,. The success of this
simple relation is strong evidence for similarity of band structure at k = 0.
In order to relate the general features of the band structures of these
materials, one may consider sequences of compounds formed from elements
of the same row of the periodic table, for example, Ge, GaAs, ZnSe,
CuBr. The band structure of the compounds of this sequence may be
regarded as generated from that of germanium by a perturbing potential.
The major portion of this perturbation will be antisymmetric about the
midpoint of the line joining the two in the unit cell. Except at certain
points of the zone (W, X) where degeneracies are removed in first order,
the principal effect of the perturbation is in second order perturbation
theory (Herman, 1955). The change in the energy gap between GaAs
and ZnSe is three or four times that between GaAs and Ge, which is about
what would be expected from this simple reasonaing. It is also possible
to pursue the argument in more detail by considering on a group theore-
tical basis the matrix elements of the perturbing potential. Since the
band structure of germanium is reasonably well understood, it is possible
to estimate the energy denominators of second order perturbation theory
and so to account for the shift of the lowest conduction band minimum
from L (in Ge) to I' (in GaAs) (Callaway, 1957b). A similar analysis
can be employed to trace the behavior of some other levels through the
3-5 and 2-6 semiconductors (Ehrenreich et al., 1962). The relation of
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energy levels in GaAs to those in germanium has also been investigated
by Bassani and Celli (1961), using perturbation theory applied to a
pseudopotential.

3.8 Aluminum

Studies of energy levels in aluminum have been reported by Matyas
(1948), Gaspar (1952), Raimes (1953), Antoncik (1953), Heine (1957a,b,c),
Harrison (1959, 1960a), and Segall (1961b). The calculations of principal
interest are the detailed studies of Heine and Segall and the (almost)
free-electron model of Harrison. Considerable experimental information
exists concerning the detailed characteristics of the Fermi surface: de
Haas-van Alphen effect measurements (Gunnersen, 1957); anomalous
skin effect (Fawcett, 1960), electronic specific heat (Howling et al., 1955);
cyclotron resonance (Moore and Spong, 1962; Fawcett, 1960). Both
Heine and Harrison have made an effort to construct a model of
the Fermi surface which would be in agreement with the experimental
observations. A large measure of qualitative success has been obtained,
but significant quantitative discrepancies remain.

The starting point of both Heine and Harrison is the determination
of the Fermi surface for a trivalent face-centered cubic metal. Heine then
made a detailed band calculation using the orthogonalized plane wave
method, in which very considerable care was used in the determination
of the crystal potential. This calculation will be discussed below. The
calculation was used to suggest the probable deviations of the actual
Fermi surface from the predictions of the free electron model. Harrison
{1960a) has extended Heine’s calculations in an approximate manner to
facilitate computation of surfaces of constant energy.

It is interesting that the Fermi surface should be quite complex
even in the free-electron approximation. The methods of constructing
the Fermi surface in this approximation were discussed in Chapter 1,
and the results for aluminum are shown in Fig. 6, which is taken from
the work of Harrison (1959). In the terminology of the reduced zone
scheme, the wave vector of an electron state k always lies within the
first zone, and the energy is a multivalued function of k with branches
characterized by the band index. We shall, however, loosely refer to
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the nth branch E, (k) as the energy in the nth zone. In this description,
the free electron approximation predicts that the first zone should be
full, and the Fermi surface should have portions in the second, third,
and fourth zones: In the second zone, the Fermi surface consists of caps
of spheres with their convex sides facing I". This surface should not touch
the zone boundary. It is very probable that the major portion of the
area of the Fermi surface in aluminum comes from this surface. To
determine the occupied regions in the higher bands it should be
remembered that in the free electron approximation for a face centered
cubic lattice, the lowest levels at X and L are doubly degenerate; at
K, U, triply degenerate; at W, fourfold degenerate. Hence in the third
zone there will be a portion of the Fermi surface surrounding the zone
edges, W — U — W and W — K — W. These pieces can be combined
to form the surface shown. In the fourth zone, there will be small occupied
regions around the corners W.

Next we consider the effect of the crystal potential (or pseudopotential)
on these levels. If the potential is sufficiently weak for it to be considered
in first order perturbation theory, the energies of the levels at the point
W become

E(Wy) =E,+ V(0) +2V(1,1,1) + V(2,0,0)
E(W3) =Ey+ V(0) — V(2,0,0) (doubly degenerate) (3.44)

E(W,) =E, -+ V(0) — 2V(1,1,1) + V(2,0,0)

In these expressions, E is the energy of the levels at W in the absence of
the potential and the V’s are, of course, Fourier coefficients of the
potential. In the case of aluminum, we expect to have the p-like states
W,', W3 below the s-like state W, so that the Fourier coefficients of the
pseudopotential should be positive. Then we will expect the W, level
to be considerably raised above (E, + V(0)) and W, to be lowered, while
if 2V(1,1,1) > V(2, 0, 0) (which is probable), W," will also be lowered.
In consequence, the occupied regions in the fourth band should disappear,
but levels in the first three bands at W should remain occupied. This is
in agreement with the results of Heine’s calculation but not with the
Fermi surface he proposed which contained pockets of holes in the first
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zone centered on W. (This proposal would require that all the levels
there should rise.)

The more precise of the two band calculations reported by Heine
utilized a crystal potential which was based on a self-consistent field
calculation (with exchange) for AI3* (Froese, 1957). A correction made
for correlation effects among the core electrons was determined by analogy
with a calculation carried out by Bernal and Boys (1952) for sodium;
separate core-valence exchange potentials were computed for s and
states. The contribution of the valence electrons to the crystal potential
was computed assuming that the wave functions for the valence electrons
are single OPW’s. This potential resembles that of a uniform charge
distribution. Comparison of the assumed potential with that computed
from some of the wave functions finally obtained indicates that the
calculation is very nearly self-consistent. A correction was applied to
take account of the nonspherical character of the potential in the metal
since the actual charge distribution does not consist of nonoverlapping
spheres. (An error in this correction was discovered by Behringer, 1958).
Exchange among the valence electrons was included from the work of
Bohm and Pines (Pines, 1955). This energy was determined as a function
of 2, and the variation with » was also determined for states near the
Fermi surface. The use of the Bohm-Pines result is a weak point of the
calculation since it is not evident that their approximations are valid.
With these exceptions, the potential appears to be one of the most
carefully constructed for a multivalent atom. Appropriate core functions
were found by numerical integration for this potential. The OPW calcula-
tion appeared to be convergent within 0.02 ry.

Heine calculated the lowest energy levels of s- and p-like states at
the symmetry points, I', X, L, W, and K, and along the 100 and 111 axes.
(An earlier and more crude calculation included 140 nonequivalent
points in the zone.) Except in the vicinity of symmetry points, the band
structure is close to the predictions of the free electron approximation for
an effective mass ratio m*/m, = 1.03. In view of this result, it seems
reasonable to extend the results throughout the zone by a pseudopotential
interpolation scheme. This calculation was made by Harrison (1960a),
who treated the Fourier coefficients appearing in Eqs. (3.45) as disposable
parameters to be determined from Heine’s results for the point W. He
set Eg + V(0) = ak? (x = 0.8535), V'(1, 1, 1) = 0.0295 ry, and V' (2, 0, 0) =
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0.0550 ry. Higher coefficients have been neglected.® When these values
were used to compute the energy at the other symmetry points of the
zone considered by Heine, the agreement was found to be generally quite
good (within about 0.03 ry or 39, except for a single level at K).

The principal reason for using a pseudopotential procedure with
a small set of basis functions (rather than the full OPW method) is to
facilitate determination of the surfaces of constant energy. This was
done for surfaces in the second and third band for energies in the vicinity
of the Fermi energy. When the surfaces of constant energy were compared
with those found in the free-electron (or single OPW) approximation,
it was found that the principal effect of mixing in additional waves is to
round off-edges of the Fermi surface in regions where they are sharp
in the free electron approximation.

The band calculation of Segall (1961b) employed the Kohn-Rostoker
method, and was based on the same potential as used by Heine, with the
correction due to Behringer, except for the truncation of the potential
outside the inscribed sphere required in the Green’s function method.
The results are generally in reasonable agreement with those of Harrison
and Heine.

There are several sorts of experimental measurements which determine
characteristics of Fermi surfaces. Some of these are the following. A
measurement of the period of oscillation of the diamagnetic susceptibility
of a metal as a function of 1/H (the de Haas-van Alphen effect), measures
the maximum or minimum cross-sectional area of the Fermi surface;
the cross section is taken perpendicular to the magnetic field. In a
magnetic field the orbit of an electron wave packet is (in a semiclassical
sense) the intersection of an energy surface with a plane perpendicular
to the field. In cyclotron resonance, an effective mass is determined
from the rate of change of the area of these orbits with energy to be

m* 1 dA

8 Harrison’s procedure does not include all the matrix elements of the Hamiltonian
which contain V(1, 1, 1) or -V(2, 0, 0). The matrix is, instead limited to a small
size (2 X 2, 3 X 3, or 4 x 4) depending on the point considered.
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Measurements of the anomalous skin effect, if made on a polycrystalline
sample, give the total area of the Fermi surface. The theory underlying
the de Haas-van Alphen effect and cyclotron resonance will be discussed
in detail in Chapter 4. We have already seen that the low temperature
specific heat gives the density of states at the Fermi energy, and hence
a value for (|, E|) there.

Harrison has compared the calculated and experimental results for
the properties of the Fermi surface mentioned previously, using principally
the single OPW approximation. The agreement is quite good qualitatively
(we shall not discuss the details here) in that the main features of the
experimental data are reproduced. " There are, however, significant
discrepancies in a quantitative sense, particularly with regard to the
cyclotron resonance masses and the low temperature specific heat. In
general, however, the comparison is sufficiently favorable to be a striking
confirmation of the applicability of the general language of band theory
to a multivalent metal.

Harrison (1960b) has also extended the free-electron calculations
to other multivalent metals, and has used the resulting model of the
Fermi surface as a guide to the interpretation of experimental results.
We will not discuss this work here.

3.9 The Noble Metals

The metals copper, silver, and gold are perhaps second in simplicity
of electronic structure only to the alkali metals, and are much easier to
handle experimentally. For this reason, the experimental determination
of the Fermi surface is, at the time of writing, much further advanced
for these materials than for the alkali metals. The lattice structure is
face-centered cubic. Most of the band structure calculations, which are
listed below, pertain to copper (for obvious reasons): (Krutter (1935),
Fuchs (1935, 1936), Tibbs (1938), Chodorow (1939), Howarth (1953,
1955), Kambe (1955), Fukuchi (1956), Segall (196la, 1962), Cornwell
(1961b), Burdick (1963).

Band structure calculations in these materials are usually concerned
with the d electron states nearest the valence levels as well as the
(supposedly) largely s-like valence electron. Slater (1936) used the
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results of the band calculation of Krutter (1935) to derive a density of
states curve for d bands, which has frequently been used in the interpreta-
tion of experiments on the properties of the transition elements. Charac-
teristic features of the Slater curve are the high density of states at
the bottom and top of the band and a minimum near the middle of the
band. Slater used this density of states to estimate the Curie temperature
of nickel, but it has been applied to the entire series of transition elements.
It is therefore worth emphasizing here that the errors in the basic band
calculation resulting from faulty application of the cellular method
are so serious that the density of states derived from it has no validity.
For example, the fivefold degeneracy of the 4 bands was not removed
at the center of the zone, and this leads to a quite spurious peak in the
density of states at the bottom of the band.

TABLE XXI

COHESIVE ENERGIES AND EFFECTIVE MASSES OF THE NOBLE METALS?

E2 = (mo/m*) E¢op (theor) Econ (exp) 75 (exp)
Copper 0.988 62.4 81.2 2.67
Silver 1.008 59.0 68.0 2.99
Gold 1.006 52.2 92.0 2.99

2 After Kambe (1955). Kambe's published results have been modified by using
the corrected form of Wigner’s formula for the correlation energy.

Interest in recent years has been centred on energy levels in the
noble metals near the Fermi surface. We will, however, first review
the attempts to calculate the cohesive energies of these materials. The
most recent calculation is that of Kambe (1955) who applied the quantum
defect method. The calculation is quite analogous to those for the alkali
metals discussed in Section 3.1. In particular, the Fermi energy was
obtained from Eq. 3.2. Because the atomic cell is small, the potential
in the vicinity of a cell boundary is not completely hydrogenic. Corrections
for the departure of the potential from the simple coulomb form were
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determined from a self-consistent field in the case of copper. For silver
and gold, the corrections were obtained from the results for copper
and may not be very accurate. The extrapolation of the quantum defects
is more difficult than for the alkali metals because of the presence of
configuration interaction in the atomic spectra. The results obtained
by Kambe (all at the observed lattice spacing) are given in Table XXI.

The simple calculations of cohesive energies which were so successful
for the alkali metals are much less so in this case. There are several
effects which would have to be included in a more rigorous calculation.
Among these are the strong van der Waals attractions between the ions
(Friedel, 1952; Mott, 1953). It has been suggested that these interactions
contribute perhaps 25 kcal/mol to the cohesive energy. Their strength
has been related to the optical absorption. The coulomb and exchange
interactions of the ions is also important, particularly in the computation
of the lattice constant and the compressibility. Further, on account
of the small cell size, the 4 electron cores overlap to some extent, and
it becomes necessary to consider the interaction between the valence
electron on one atom and the d electron core of neighboring atoms (Hsu,
1951). This is at variance with the usual procedure of the Wigner-Seitz
approximation in which an electron is considered to move in the field
of a single ion. A different and very important criticism of Kambe’s
procedure comes from the band calculations of Segall (196la, 1962)
and Burdick (1963). These show that the filled 4 band (about 4 ev in
width and containing ten electrons) lies above the lowest s level (I7),
whose energy is calculated by Kambe. If this is correct, it is quite
impossible to estimate the Fermi energy according to (3.2), and it is
necessary to consider the contribution of the 4 electrons — as band
electrons — to the cohesive energy.

We next turn to a description of the Fermi surface. A free-electron
Fermi sphere (one electron per atom) would, if placed inside the Brillouin
zone for the face-centered cubic lattice, approach closest to the zone
face in the vicinity of the hexagonal face centers L. The radius of the
free-electron sphere amounts to 909, of the I-L distance (to be denoted
by d) — a slightly closer approach than that in the body-centered cubic
lattice. Since E(k) must be flat at L, a distortion of the Fermi surface in
the vicinity of L is to be expected. In fact, the experimental evidence
indicates that in all three of the noble metals, the Fermi surface is in
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contact with the zone boundary at L. The surface may be represented
pictorially as a sphere drawn out along the 8 (1,1, 1) axes as shown in
Fig. 12. A model of this sort was first proposed for copper by Pippard
(1957) to interpret the results of measurements of the anomalous skin
effect.? Confirmatory evidence has come from measurements of the

Fig. 12. Cross section of the Fermi surface of copper in a plane perpendicular
to a (1,1, 0) axis.

de Haas-van Alphen effect (Shoenberg, 1962), cyclotron resonance (Kip,
1960; Kip etal., 1961), magnetic field dependence of ultrasonic attenuation
(Morse, 1960; Morse ef al., 1961); Easterling and Bohm, 1962), and
magnetoresistance (Klauder and Kunzler, 1960). A detailed description
of the Fermi surface in these materials has emerged. Contact of the Fermi
surface with the zone boundary is definitely indicated.

The radius of the contact area (assumed circular) may be deduced
from the de Haas-van Alphen (dHvA) measurements and from the

9 A mathematical description of the Fermi surface in copper was given by Pippard
(1957), and by Garcia-Moliner (1958), who used a Fourier Series in a fashion similar
to the tight binding interpolation scheme of Slater and Koster (1954). The more
recent data on the Fermi surfaces of all the noble metals has been treated by Roaf
(1962), who has extended the Fourier series approach of Garcia-Moliner.
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magnetic field dependence of ultrasonic attenuation (UA). The results
are given in Table XXII, in terms of the I'—L distance, d. The theoretical
results of Segall (1962) (using his ““/-dependent potential) are also given
for the case of copper. The cyclotron effective mass ratios are defined by

m* 1 44

where A is the area of the orbit.

TABLE XXII

FERMI SURFACE DATA FOR THE NOBLE METALS

Cu Ag Au

Neck radius »
(dHvA) 0.18d 0.12d 0.164
(UA) 0.17d 0.134 0.17d
Theory (Segall) 0.184
Belly radius k2
(100 axis) 0.974 0.93d 1.024
(110 axis) 0.85d 0.87d 0.854
“*Cyclotron’’ mass ratios

belly? 1.38 0.7 1.2

neck 0.6 0.5
Theory (Segall)

belly 1.1 + 0.1

neck 0.41 4 0.02
I'-L distance d 1.51 x 108cm~! 1.34 x 108cm~* 1.34 x 108cm™?

2 Since the “belly”’ is not exactly spherical, there is a spread in the values of
the radius and of the effective mass. Most of the data in this table is taken from
the discussion of Roaf (1962).

The existence of regions of contact between the Fermi surface and
the Brillouin zone implies, when one considers the equivalence of opposite
points on the zone surface, that the Fermi surface is actually multiply
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connected. Such a surface has the property that its intersection with
a plane need not be a closed curve. As the orbit of an electron in a
magnetic field is, as was pointed out previously, the intersection of a
plane perpendicular to the field with the Fermi surface, it is evident that
when contact of the surface with the zone boundary occurs, electron
orbits may exist which are not closed. This is perhaps easiest to visualize
in an extended zone scheme in which the Fermi surface is repeated
periodically in a zone structure which fills all space. The possibility then
exists for an electron to wander from one zone to another in an open
orbit without leaving a plane perpendicular to the applied field.

Ziman (1961) has attempted to develop a simple characterization
of the Fermi surface in terms of the nearly free-electron approximation
by considering only the interaction of two (orthogonalized) plane waves
which would be degenerate on the zone boundary. A single Fourier
coefficient of a pseudopotential enters into this calculation V(1, 1, 1).
This procedure may be reasonable near the point L, where contact occurs,
since in lowest order only the waves (2n/a) (3, %, §) and (2n/a) (— %, — 3,
— 3) are connected there; at other symmetry points other waves must
be considered, even in first order.

The equations may be easily obtained from (2.23). Let us denote
the two interacting waves by k and k', where k' = k — (2zn/a) (; + i + l;),
the (1, 1, 1) Fourier coefficient of potential by V, and the quantity E(k)
by 4. We may take approximate account of the effect of the crystal
potential on the diagonal matrix elements by replacing k2 in the ordinary
free electron approach by ak2 where « is then a reciprocal effective mass.
Then we have the 2 x 2 determinantal equation

ak? — 4 V
14 ak2 — 4| 0 (3.46)
whose solution is:
2= }la(k? 4 k%) £ Jo?(k® — K22 + 412] (3.47)

Since this solution is expected to be useful only in the vicinity of the
point L [whose position vector we denote by k, = (n/a) (i + j + k)],
it is convenient to put

k=k,+ 0k; Kk =0k —k,
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Then (3.47) becomes

yl vr
T=ket ok L |/ o+ 4(ky k)2 (3.48)

Evidently at the zone boundary where 0k = 0, the energy gap is just 2V,

The pseudopotential coefficient IV may be related to the neck radius
7 in the following way. Let the Fermi energy (4;) be given. The intersection
of the surface of constant energy, A = A, with the zone face is a circle of
radius #, where 72 = 0k?, and (since the face is perpendicular to the
111 axis) k- 0k = 0. Further ky® = 42, where 4 is the I'—L distance
previously defined. We take the lowest root of (3.48):

/7
P VEC O (3.49)
o o

We definé dimensionless measures of the Fermi energy and the pseudo-
potential as follows: # = V/ad? ¢ = A;/ad?,

v = dles + u — 1)12 (3.49a)

The catch in this is that it is now necessary to evaluate the Fermi
energy, taking into account the distortion of the surfaces of constant
energy from the spherical form. If we should use the free electron value
for & (with @ = 1 and & = 0.814), we find that a neck radius of 0.184
implies # = 0.22, and hence that V' = 1.9 ev (for copper), which implies
a gap of 3.8 ev at the zone face. Use of Segall’s (1962) values for the
Fermi energy does not change this estimate appreciably since ¢ as deduced
from his work is 0.809. This seems to be in reasonable agreement with the
indications from optical data (Biondi and Rayne, 1959) that the gap at
the point L is perhaps 3.5 ev wide in copper. The value obtained by
Segall is considerably larger: 5.9 ev. If we use this gap to determine V,
then # comes out to be 0.265.

Ziman has discussed the electron specific heat on the basis of his
model. In order to perform the integration in (3.24) it is necessary to
have a representation of the Fermi surface as a whole, which he approx-
imates as formed from eight cones around 111 axes, with gaps as given
from (3.48). The experimental thermal effective masses for the noble
metals are, according to Eq. (3.25) and the measurements of Corak
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et al. (1955): copper, m,/my = 1.38; silver, m/my, = 0.96; gold,
my/my = 1.18. Ziman finds that agreement with experiment can be
obtained in his theory by choosing « to be 1.15, 1.61, and 1.37, respec-
tively.

Cohen and Heine (1958) has shown that (see Section 4.10 for a deriva-
tion of this result) the real part of the dielectric constant ¢ of a cubic
metal, at frequencies below the main absorption edge but still sufficiently
high so that relaxation effects may be neglected, is, in mks units,

2

£ w
—=1 - —r 3.50
£ T e w? (8.50)
and
o Necé?
wp? = —
Mop €

in which «, is the contribution from the atomic polarizability, w, is the
plasma frequency, N_ is the number of conduction electrons per unit
volume, and mo";, the average “optical” effective mass of the electrons,
is given by

* -1 1
1

The measured optical effective masses (Schulz, 1957, Ehrenreich and
Philipp, 1962) are 1.42, 1.03, and 0.98 in units of m, for copper, silver,
and gold, respectively. Ziman has calculated these quantities from his
theory, and finds rather good agreement with experiment. A more
elaborate pseudopotential calculation considering gold and silver as well
as copper, and including the (2,0,0) Fourier coefficient, has been
reported by Cornwell (1961b).

The band calculations which have been performed for these materials
disagree with each other in many important respects. However, con-
siderable- progress has been made recently in the calculation of energy
bands in copper. The work of Segall (1962) and Burdick (1963) utilizing
the Kohn-Rostoker and APW methods, respectively, has produced a
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band structure in reasonable agreement with experiment. We will discuss
the former calculation here. Two different crystal potentials were
considered: one obtained by Chodorow (1939), which is principally
appropriate for d states, and the other calculated by Segall and allowing
a different exchange potential for s, p, and 4 states. An /-dependent
potential can be easily accommodated in the Green’s function approach.
The band structures based on the two potentials are in quite reasonable
qualitative agreement with each other. The essential features of the
results are that the 4 bands overlap the s band, but lie below the Fermi
level, and that the predicted Fermi surface is in contact with the Brillouin
zone in the vicinity of the face center L in the manner required by the
experiments previously discussed. Large band gaps are predicted to
exist on the zone faces. The top of the 4 band is apparently located
either at W, representation W,’, or X, representation X, (the energy
difference between these states is very small), approximately 2 ev below
the Fermi level. This enables an interpretation of the main absorption
edge in copper, which begins at about 2.1 ev and is responsible for the red
color of the metal as due to transitions from the filled 4 bands to the
Fermi level (in agreement with Mott, 1953). States near the Fermi
surface are generally p-like so that the optical transition is allowed. The
alternative explanation of the absorption edge as due to transitions
between the Fermi level and higher bands (Suffczynski, 1960) is not
supported by this calculation since the relevant band gap is much larger
(4 or 5 ev). Portions of the calculated band structure are shown in Fig. 13.

Segall has calculated the parameters describing the Fermi surface.
Some of these are given in Table XXII. The “belly” of the Fermi surface
is not particularly spherical, being pulled out along the (1,0, 0) axes,
and pushed in along the (1, 1, 0) axes, in general agreement with Morse
et al. (1961). The distortion may be interpreted as due to the interaction
of the conduction band with 4 bands, since there is a greater admixture
of [ = 2 components into the conduction electron wave function on the
(1, 1, 0) axis than along the (1, 0, 0) axis. The thermal and optical effective
masses were calculated to be 1.12 4 0.06 and 1.2 4- 0.10, respectively.
The effective masses are seen to lie below the experimental values, as
was previously found to be the case for the thermal effective masses in
the alkali metals. It is tempting to ascribe the discrepancy to neglect
of electron-electron and electron-phonon interactions.
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Segall has examined the corrections to the band calculation resulting
from the truncation of the potential outside the inscribed sphere, and
from the nonspherical components of the actual crystal potential. The
corrections are found to be small. This confirms the utility of the Green’s
function method for band calculations.
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Fic. 13. Energy bands in copper along the (1, 0,0) and (1, 1, 1) axes according

to Segall (1962).

The dashed line, Er, shows the Fermi energy.

A preliminary report of energy band calculations in silver has been
given (Segall, 1961a). The band structure appears to be similar to that

found for copper.
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3.10 d Bands and Transition Metals

Under the title of transition elements, we will consider only those
elements of the fourth period of the periodic table in which the free
atoms possess incomplete d shells. These metals are particularly interesting
because of their magnetic properties: iron, cobalt, and nickel are
ferromagnetic; chromium and manganese are antiferromagnetic. Many
of the simple compounds of these elements are antiferromagnetic. The
magnetic properties are naturally ascribed to the d electrons, and it
becomes a principal task of band theory to give a satisfactory quantum-
mechanical account of these properties.

Detailed discussions of the band theories of ferromagnetism and
antiferromagnetism can be found in papers by Slater (1951b, 1953b,
1956). We will not discuss this work in detail here. It will suffice to state
that it has not been possible to give a quantitative account of either
ferromagnetism or antiferromagnetism in metals. Some of the difficulties
involved should become apparent in the course of this discussion.

Although experimental evidence relating to the band structures
of these materials is quite meager in comparison to some other materials
we have discussed, what there is (particularly that derived from the
magnetic properties) suggests a rather smooth and gradual variation
of electronic structure from element to element, regardless of rather
substantial changes in crystal structure. Thus it seems reasonable
to try to construct a general model of 4 bands in the transition
elements. There have been many attempts to do this: Mott (1935,
1949), Mott and Stevens (1957), Pauling (1938, 1953), Bader et al.
(1954), Lomer and Marshall (1958), Goodenough (1960), and Wollan
(1960). The basic ideas of the original proposal of Mott were that there is
a narrow 4 band of width less than 1 ev which is overlapped by a wide
s band. A narrow 4 band is necessary in the band theory of ferromagnetism
so that the decrease of energy resulting from increased exchange upon spin
alignment will outweigh the increase of energy resulting from the promo-
tion of the electrons to higher band states. The magnetic properties are
determined by the d band whereas the cohesion and the conductivity are
produced by a relatively small number of s electrons: less than one per
atom. Scattering of s electrons into vacant 4 band levels, where the
density of states is high, accounts for the relatively large resistivity.
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On the other hand, Pauling assumes that the 4 electrons (two in iron)
responsible for the magnetic properties form a band of essentially zero
width. The atomic model is adequate for these electrons. The other
electrons, s and 4 in the free atom, go into a broad band which is based
on hybridization of s, p, and 4 orbitals. Ferromagnetism is believed to
be produced by the exchange coupling of the atomic 4 electrons with
the conduction band in a manner similar to the proposal of Zener and
Heikes (1953). A small number of the conduction electrons contribute
to the net magnetic moment.

A basic conflict is evident in the discussion of the transition metals
with respect to the question of the adequacy of the band approximation
to describe the behavior of the 4 electrons. Adherents of the band approach
believe that a properly self-consistent calculation of energy bands from
the Hartree-Fock equation would make possible, at least in principle,
reasonably quantitative explanations of magnetic properties. This point
of view has been expounded by Slater. Others, including Pauling, Zener,
and, in recent years, Mott have contended that a model in which at least
some of the 4 electrons are localized on atomic sites is a closer approx-
imation to reality.

A basic difficulty which arises in the energy band theory of ferro-
magnetism is this: The theory erroneously predicts ferromagnetism in
the limit of infinite atomic separation. This results because the energy
of a nonmagnetic state (disordered spins) is overestimated in this limit:
polar states of the individual atoms in which some have too many electrons
and some have too few are predicted to occur in large number. The energy
of the ferromagnetic state does go to the correct limit as the interatomic
distance becomes large because the Pauli principle effectively prohibits
such polar states. This difficulty is an aspect of the general problem of
treating the electron interaction in more detail than is possible in the
Hartree-Fock approximation. Its importance in consideration of the
transition metals is emphasized by the fact that one seems to be close
to the large separation limit for 4 wave functions in the materials. The
problem may be summarized in a different way as follows: if the 4 band
is narrow, neglect of correlations leads to a serious overestimate of the
tendency to ferromagnetism; if the band is wide, the promotion energy
inhibits ferromagnetism.
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Quantitative calculations of energy bands in the transition metals
are unusually difficult. The problem of attaining self-consistency is
present in an aggravated form: because of the large numbers of 4 electrons
which have to be considered it is not only more difficult to attain self-
consistency, but the consequences of departures from self-consistency
may be more serious. Thus, d band calculations have not been sufficiently
quantitative to lead to a precise theoretical model. However, a number
of comments can be made which indicate how improvements must be
made in the simple models.

In the first place, none of the numerous band calculations indicates
that the 4 band is extremely narrow: less than 1 ev in width. A figure
of 3 ev seems to be a reasonable minimum figure. However, exchange
coupling effects involving spin waves may reduce the calculated values
somewhat, (Wolfram and Callaway, 1962). Secondly, in spite of a brief
flurry of concern in connection with the experiments of Weiss and De
Marco (1958; see also Batterman et al., 1961 and Cooper (1962)), the
number of “s and p” electrons per atom in iron, cobalt, and nickel is
probably small (one per atom or less — particularly in Ni). It is then
necessary to assume that the d electrons contribute to the cohesion.
Hall effect measurements (Foner and Pugh, 1953; Foner, 1957) indicate
predominantly hole conduction in vanadium, chromium, manganese and
iron, but electron conduction in cobalt and nickel; this strongly suggests
the importance of conduction in 4 band states.

The question of the general shape of the d band has been particularly
serious. It arises in the following way: several authors (Bader et al.,
1954; Mott and Stevens, 1957; Wollan, 1960; Goodenough, 1960)
have attempted to divide the d electrons into two groups on the basis
of crystal field theory. (For a review of crystal field theory, see Moffitt
and Ballhausen, 1956). The fivefold degeneracy of free-atom 4 levels
would be split by an electric field with cubic symmetry (such as would
arise naturally in a lattice) into a triply degenerate system, based on
functions of xy, yz, 2x symmetries, usually denoted f,,, and a doubly
degenerate set, ¢, based on functions of x% — y%; 322 — 2 symmetries.
If we approximate the actual metal as a lattice of positive point charges
screened by a uniform distribution of negative charge, then in both the
body-centered and face-centered cubic lattices, the cubic components
of the crystalline field would tend to lower the energies of the 7, states
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and raise the e, states. In the limit of large atomic spacing, this effect,
which falls off as a=® (a is the lattice spacing), would be larger than
effects involving overlap of wave functions on different atoms which
tend to widen the bands. The latter must decrease exponentially with
increasing 4, so that a separation of the 4 band into ¢, and ¢, subbands
would be produced. The magnetic electrons in iron might then be put
into a half-filled &, subband.

Such a splitting produces an ordering of levels which is different
from the normal, nearly free-electron, level order. In the body-centered
cubic lattice this arrangement places the doubly degenerate level above
the triply degenerate one at the center of the zone but the reverse order
with a larger splitting is found at the corner H. This ordering is also
achieved in the tight binding approximation. Consequently, a crossing
of bands on the 100 axis is predicted (something close to this remains
even when spin orbit coupling is included).

It is possible to make some simple calculations which indicate the
sort of band structure to be expected (Callaway 1959, 1960b, 1961a).
In the case of 4 electrons it is not necessary to distinguish between an
ordinary crystal potential and a pseudopotential since the basic d states
at symmetry points are orthogonal to the s and $ functions (this applies
completely, however, only at I" and H). We can use the simple crystal
model of a point charge lattice with atomic number Z, lattice parameter a4,
and a uniform distribution of negative charge, and treat the crystal
potential as a perturbation in accord with the procedure discussed in
Section 2.3. When terms of second order in the crystal potential are
used, the energies of the four 4 states at I" and H are (I'y;" and H,;’ are
the #4,, states; I, and H,, are the ¢, states)

(
E(I',.,) = 78.957/a? — 0.7679(Z/a) — 0.00509Z22
(Ie5) la (Z]a) (3.52)
(

E(H,,) = 39.478/a® — 0.2905(Z/a) — 0.0026722
— 0.0049922
(

E(I'y,) = 78.957/a% — 0.3435(Z/a)
)

(
E(H,;') = 118.43/a? — 0.8740(Z/a) — 0.00116522

For small values of the binding parameter Za, the ordering of levels
is determined by the free-electron kinetic energy [the first terms in
(3.52)], and the band scheme of Fig. 14 is implied. For large values -
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of Za, the perturbation calculation is certainly not reliable numerically,
but the qualitative behavior of the expressions is interesting: the #,,
levels I'ps" and Hyy' lie below the ¢, states Iy, and H,, indicating a split
of the 4 bands. A more accurate calculation is required to determine
the value of the binding parameter for which this split occurs: It has
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Fic. 14. d Bands along the 100 axis in the body-centered cubic lattice. The
dashed curves show the bands with spin orbit coupling neglected; the solid curves
show the effect of its inclusion.

been possible to make a reasonable estimate of this using the nearest
neighbor tight binding approximation of Suffczynski (1956a,b, 1957) to
determine the overlap splitting and a calculation of the crystal field
effects in this idealized lattice (Callaway and Edwards, 1960). The
crystal field splitting does not dominate for Za < 72. It is not possible
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to make quantitative application to the transition metals from this simple
theory, but we see that if ¢ = 6, (iron has a = 5.4), we would have to
have Z = 12 to get a split 4 band. We do not expect the effective charge
in this theory to be greater than that of the core of closed shells under
the 4 band (which would imply Z < 8 for iron). Hence crystal field
effects should not produce a split 4 band in the case of iron. This conclu-
sion is reinforced by a computation of the crystal field splitting in a
point charge lattice using the actual lattice spacing for iron, and self-
consistent field wave functions (Watson, 1960a,b). The separation
between the /,, and the e, states due to the crystal field was found to
be — 0.1 Zev. This will be smaller than the 4 bandwidth for any rea-
sonable value of Z.

There have been a fairly large number of energy band calculations
for these metals: Titanium: B. Schiff (1955, 1956), Altmann (1956,
1958a,b), Altmann and Cohan (1958); Chromium: Asdente and Friedel
(1961), Asdente (1962), Lomer (1962); Iron: Manning (1943), Greene
and Manning (1943), Steinberger and Wick (1949), Callaway (1955),
Suffczynski (1956a), Stern (1959), Belding (1959), Wood (1960, 1962);
Nickel: Fletcher and Wohlfarth (1951); Fletcher (1952), Koster (1955).
The calculations made prior to 1958 have been reviewed previously
(Callaway, 1958a). We will emphasize here the calculations concerning
iron, on which the most careful work has been done.

The OPW calculation of Callaway (1955) is interesting chiefly insofar
as it sets a minimum value for the bandwidth. A potential derived
from a self-consistent field calculation for the free iron atom (Manning
and Goldberg, 1938) was used. It was assumed that in metallic iron
there are six d electrons and two s electrons, and the crystal potential
was determined by superposing charge distributions from Manning’s
calculation placed on lattice sites. An exchange potential computed
according to Slater’s (1951a) free electron approximation was also included.
The calculation determined that this choice of potential was far from
being self-consistent in that it yielded a very narrow d band (width 0.1 ry)
below the s band. Hence, the predicted configuration in the metal was
a8 instead of d%2. Various corrections were then made to the potential
to estimate the position of the bands more reliably on the basis of a
potential derived from a d%s! configuration. These corrections need not
concern us here. The essential point is that the assumed charge distribu-
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tion was too diffuse for self-consistency: the potential was too attractive
in the region in which the 4 functions have their maxima, so that the
predicted d band was too low and too narrow. We can conclude therefore
that the actual 4 band in iron must be wider than 0.1 ry, and there must
be less than two ‘s electrons” per atom.

Stern (1959) has reported an interesting calculation of the cohesive
energy of iron. His method is a modification of the tight binding approx-
imation. The ordinary tight binding wave function ¢, which is formed
from an atomic orbital # is

Px(r) = Vlﬁ 2 Pur —R,) (3.53)

We saw in Section 2.10 that if the expectation value of the energy is
evaluated with this wave function, a complicated series of multicenter
integrals must be summed. However, it is possible to avoid multicenter
integrals if the wave function is evaluated within one cell, including the
contributions from the distant neighbors. It is also necessary to orthog-
onalize the wave function to the core states. The tight binding function
can be written as a sum of the wave function in the central cell plus
an overlap contribution, which we denote by

p'(r) = D' * Brur — R,)

v#0

If u,(r) is a core wave function in the cell at the origin, we orthogonalize
¢, to u, by constructing the function

il (1) = i’ (1) — > us(r) ka’(r) wy*(r) d3 (3.54)

b

Then, instead of (3.53), Stern uses the wave function (unnormalized)
@k (r) = u(r) + ¢’ (r) (3.55)

Stern evaluates the overlap term by a power series expansion in the
central cell. He finds that it is necessary to include only first and second
neighbors in calculating the 34 wave function, but in the case of the
4s wave function terms out to sixth neighbors were included, and a
qualitative correction was made for those farther out.
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Stern uses the approximation of Wigner and Seitz in constructing
the crystal potential: each electron moves in the field of a positive ion.
Specific exchange effects are not included. In the calculation of the
crystal potential, the cells are considered to be spherical and, except for
the one in which the wave functions are calculated, neutral. Then the
cohesive energy may be expressed as a sum of contributions from individual
cells. This differs from the usual formalism in that the expectation
value of the energy is not evaluated with a specific determinantal wave
function, so that the energy found is not an upper bound to the true
energy. But there is a significant advantage which largely compensates
for the loss of the applicability of the variational principle: the procedure
is correct in the limit of large lattice constants, and avoids the difficulty
associated with polar states which was mentioned previously. The number
of 4s electrons in the solid was treated as a parameter, but the potentials
were derived from the wave functions, previously calculated by Stern
(1956), for the 47s! configuration of the free iron atom.

Stern calculated energy values for 16 nonequivalent points in the
Brillouin zone, distributed along the 100, 110, and 111 axes. He estimated
a rough density of states from these and computed the cohesive energy.
This calculation was repeated for four values of #,,, the number of 4s
electrons per atom (0.3, 0.6, 0.9, and 1.0) and three different values
of the sphere radius (r, = 2.30, 2.66, and 3.10). He then determined
the value of #,, by finding the minimum of the energy with respect to
it for fixed r,. Then the final cohesive energy, lattice constant, and
compressibility were determined by finding the minimum of the cohesive
energy as a function of 7. The cohesive energy was found to be
0.43 ry/atom in comparison with the experimental value of 0.32 ry/atom
(99.2 kcal/mol). A theoretical uncertainty of + 0.2 ry is estimated. The
sphere radius comes out to be 2.66 which agrees with experiment, as
does the calculated compressibility. No explicit correction for correlation
and exchange was made.l?

10 An interesting auxiliary result of Stern’s calculation is the prediction from
consideration of the matching of wave functions at the center of the faces of the
atomic polyhedron that the normal order of d band levels at N (increasing energy)
is Ny, Ny, Ny, N,, N;. The normal positions of the two N. | states are located, which
was not possible in Section 3.3.
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Stern’s calculation has been emphasized here because it is the first
significant detailed calculation of the cohesive energy of a metal with
more than two valence electrons. It is quite encouraging that reasonable
results can be obtained. The calculation can be criticized for neglect
of the exchange interaction, both between the valence and core electrons
and between the d electrons themselves. Stern has, however, evaluated
the exchange energy for a determinantal wave function approximately
(which was otherwise included in the assumption that each electron
moves in the field of an ion: the coulomb hole), and finds that the binding
would have to be reduced by 0.75 ry/atom. However, it would then
be necessary to include an explicit correction for correlation, as in Eq.
(3.21), which Stern does not consider. Further, the exchange interaction
of the d electrons would tend to reduce the ¢ bandwidth. Stern’s figure
of 0.68 ry (9.2 ev) for this quantity is probably too high. The occupied
portion has a width of 0.33 ry (4.5 ev) (not considering magnetic effects,
however).

Wood (1960, 1962) has studied the 4 band in both the body-
centered and face-centered cubic forms of iron in detail using the
augmented plane wave method. Most of the work has been based on a
potential previously obtained by Manning (1943), which does not include
exchange effects and consequently may cause an overestimate of the
bandwidth. Wood obtained energy values for levels belonging to the
lowest six bands at 55 points inside 1/48 of the Brillouin zone for bcc
iron, including general points. A smaller number of points were con-
sidered for fcc iron. The general structure of the band is in agreement
with the considerations presented earlier: in particular, the separation
of the d levels at the center of the zone, I', is less than one-third the
separation at the corner, H, and the order of the levels at these points
is reversed. One surprising feature is the presence of the largely p-like
level N," in the middle of the 4 band levels at the face center. If this
is correct, it suggests that there may be an appreciable mixture of p
character in the 4 band wave functions — a possibility which was not
considered by Stern. The total width of the 4 band was 0.47 ry (6.4 ev).

A density of states was constructed from the results of the band
calculation. It has two principal maxima separated by a deep minimum.
If allowance is made for the ferromagnetic properties of iron by shifting
the bands corresponding to electrons of 4+ and — spin, without inclusion
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of explicit exchange effects, however, the occupied bandwidth is 5.7 ev
for majority spin electrons and 3.8 ev for minority spin electrons. The
density of states at the Fermi surface is found to be 1.22 electrons per
atom per ev. The density of states calculated by Woods is qualitatively
similar to that found in an earlier calculation by Belding (1959), whose
work was based on the tight-binding approximation.

The numerical sampling technique employed by Wood in the cal-
culation of the density of states probably tends to obscure some of the
important structure of this function. Wohlfarth and Cornwell (1961)
have calculated a more detailed function through the use of the Slater-
Koster (1954) interpolation scheme to extend Wood’s calculation and
obtain the energy at a larger number of points than he considered. The
density of states they obtained is characterized by several high, sharp
peaks.

Wood and Stern have studied the 4 electron wave functions as well
as the band structure. Both have emphasized the change in the relative
compactness of wave functions of d electron wave functions on going
from the bottom of the 4 band to the top. Wave functions associated
with the lower-lying states tend to be smooth and nearly flat at the
boundary of the cell, while those pertaining to higher states are small
on the cell boundary, and thus must have a higher peak inside the cell.
In a qualitative sense, this result follows from elementary considerations
since a rapidly varying wave- function implies a high kinetic energy.
In terms of the simple perturbation treatment of the crystal potential
discussed previously, the low-lying states have large long-wavelength
components, while the higher states are based on functions of larger |k|.
For instance, at the corner H, the low-lying state H,, is based on plane
waves of wave vector k = (2z/a) (1, 0, 0) whereas the higher state H,'
is based on waves with k = (2n/a) (1,1, 1). If one assumes that the
free atom wave functions correspond roughly to states near the middle
of the band, then in iron in which the 4 band is not full, one would expect
that the charge distribution in the metal would be somewhat more diffuse
than in the free atom.

In addition the charge distribution around any lattice site need not
be spherically symmetric, but only have cubic symmetry. This effect
has been discussed by Weiss and Freeman (1959), and Stern (1961) has
estimated these effects on the basis of his band structure calculation.
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It is found that the net spin-up (parallel to the magnetization) charge
density in iron as determined from neutron scattering measurements
reveals a slight preferential population of e, states: 509, of the net
spin up density has e, symmetry, whereas 409, would be expected in
a spherical distribution.

Experimental information concerning the band structure of iron is
quite meager, since none of the experiments which have dramatically
clarified our knowledge of Fermi surfaces in some of the materials
previously discussed have been performed.!! Cheng ef al. (1960) have
measured the electron specific heat of iron (and of many body-centered
cubic transition metal binary alloys). From this data, the density of
states at the Fermi surface comes out to be 28.7 electrons/ry (or 2.11
electrons/ev), considerably larger than the value obtained by Wood.
This large value raises serious problems for theories which assume ‘that
some — or all — of the d electrons are in atomic orbitals which do not
contribute to the Fermi surface. If the density of states at the Fermi
surface were an average for the whole band, a width of 3.8 ev would
be implied (for the occupied portion). Stern’s calculation (neglecting
the important band shift caused by the ferromagnetism) gave a density
of states of 25 electrons/ry for this quantity.

Walmsley (1962) has reported a measurement of a linear shift of the
Fermi level in iron with applied magnetic field. He concludes that all
the electrons on the Fermi surface have spin parallel to the magnetiza-
tion. This result is in conflict with the band structure calculations,
and if true, appears to imply a split of the spin-down band into subbands
lying above and below the Fermi surface.

Cheng et al. have attempted to use their data on the specific heats
to determine a common density of states for the bce transition elements.
To do so, it is necessary to assume an ultrarigid band model: the effect
of alloying (or even of changing the element) is only to alter the occupation
of a given density of states (hence, just to change the Fermi energy).
The density of states so derived has a deep minimum at a position
corresponding to the Fermi level of chromium, and subsequently rises

11 At the time of writing, the only measurement pertaining to the Fermi surface
in transition metals is of Fawcett and Reed (1962) concerning the magnetoresistance
of Nickel. These authors show that the Fermi surface is in contact with the Brillouin
zone in the vicinity of the hexagonal face center, L.
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to a very high peak (of the order of 9 electrons/ev) midway between
chromium and manganese. This behavior is, of course, extremely
interesting, but the justification of the rigid band model is doubtful.

Measurements utilizing the Mossbauer effect have shown that the
effective magnetic field at a Fe5” nucleus in ferromagnetic iron is large
and negative (— 333 kgauss) (Hanna ef al. 1960). The negative value
implies that the direction of the field is opposite to the direction of mag-
netization. A number of effects which contribute to this field have been
discussed by Marshall (1958). There is an exchange polarization of the 4s
electrons by the 3d electrons which causes an excess of 4s electrons whose
spin is parallel to that of the majority of the 3d electrons (Callaway,
1955; Pratt, 1957). There is some admixture of 4s wave functions into the
34 band, and a contribution from unquenched orbital motion due to
spin orbit coupling. These effects tend, however, to produce a field
parallel to the magnetization of between 120 and 370 kgauss, according
to Goodings and Heine (Goodings and Heine, 1960). There must be a
negative contribution to the field amounting to at least 450 kgauss, and
this can come only from the core electrons.

A core electron whose spin is parallel to that of the majority of 4
electrons will experience a stronger exchange interaction than one whose
spin is opposite. Hence the wave functions for core electrons of majority
and minority spins will be different, and one may calculate a net spin
density at the nucleus coming from these core electrons in closed shells
(s electrons but p,, as well if relativistic effects are included). It is
perhaps surprising that the polarization of an inner shell may be opposite
to the magnetization. This possibility was first pointed out by Heine
(1957d), and occurs because the attractive exchange potential tends
to pull the core electrons of parallel spin into a region where the 34
functions are large, thus reducing their amplitude at the nucleus. If
p, is the unbalanced spin density at a nucleus due to an electron in shell #,

pr = [ms(0)[* — [h (02
The arrows t and | indicate spin parallel and antiparallel to that
of the majority. The effective magnetic field due to the core is (Goodings
and Heine, 1960)

8 5
Hcore = Tn,uB? ZP" (356)
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Here § is the effective spin from the measured magnetic moment per
atom, and s is the spin of the configuration for which the p, are calculated.
This field has been estimated by Goodings and Heine and by Freeman
and Watson (1960). These authors show that the net contribution from
the core electrons is indeed negative in iron (due principally to the
2s shell: the 3s shell makes a positive contribution), but it appears
somewhat more difficult to make the negative contribution as large as
required by experiment. However, these calculations are all nonrelativ-
istic, and one might expect a significant improvement if the Dirac
equation were employed since an enlarged contribution from the s electrons
would be augmented by a contribution from the p,, electrons.

3.11 Bismuth

A large amount of work has been done in order to determine the
Fermi surface in bismuth. The metal has a rhombohedral structure with
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F1G. 15. Brillouin zone for bismuth. Points and lines of symmetry are designated
according to the notation of Cohen (1961).

two atoms per unit cell. It is often useful to consider the structure to
be a distorted simple cube. Each atom has six neighbors, but the distances
are not equal: there are three short bonds and three longer bonds. The
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Brillouin zone for this structure is shown in Fig. 15; it may be regarded
as a distorted form of the Brillouin zone for the face-centered cubic
lattice, and some of the symmetry points have been designated in the
same way.

Electronically, bismuth may be characterized as a semimetal. Small
numbers of both electrons and holes are present in equilibrium at absolute
zero. The concentrations of these are equal but are not known exactly.
Estimates range from 2.5 x 10¥/cm3 to 6.5 x 10Y7/cm3 (or from
0.9 x 10~%/atom to 2.3 x 10~3/atom) at O °K. The stronger evidence
favors the smaller number (Zitter, 1962). A number of experiments
have suggested that the Fermi surface for the electrons consists of three
very prolate ellipsoids (which are not centered at k = 0 — the exact loca-
tion is not known).1? If %2, and %, are chosen along the binary and trigonal
axes, one ellipsoid can be represented as:

25120 E=oyk2+ ayk?+ az k2 + 20, ky &, (3.57)
The values of the «, are not known exactly. Information concerning
these quantities may be obtained from the de Haas-van Alphen effect,
cyclotron resonance, ultrasonic attenuation, and far infrared reflectivity
and transmissivity. Jain and Koenig (1962) give «, = 119, o, = 1.31,
ag = 102, o, = 8.6; Cohen (1961) quotes a, = 202, «, = 1.67, a; = 83.3,
o, = 8.33. If the latter set is referred to the principal axis system, the
effective masses are 0.005, 0.012, and 1.3.13 Principal axis 3 is tipped 5.8°
from the trigonal axis. Estimates of the Fermi energy at O °K are in the
vicinity of 0.022 ev.

The situation with respect to holes is even less clear. Both light
and heavy holes may exist. The existence of light holes occupying one
(or possibly two) ellipsoids of revolution about the trigonal axis is
established by the work of Galt et al. (1959) and Brandt (1960). The

12 The number of ellipsoids is perhaps not yet definitely determined. There might
be six ellipsoids.

13 The effective masses measured in a cyclotron resonance experiment are not
given directly by these numbers. The cyclotron resonance masses must be determined
from (3.45), and are of the general form (m; mi)l/z; depending, of course, on the
direction of the magnetic field.
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effective masses in this band are m,/my = 0.92; m,/m; = 0.068, according
to Galt; and 0.7 and 0.05 respectively according to Brandt. The existence
of heavy holes is postulated to account for measurements of the electronic
specific heat (Kalinkina and Strelkov, 1958; N. E. Phillips, 1960), which
appear to show that the density of states at the Fermi energy is larger than
can be accounted for by the light electrons and holes previously mentioned.
As the two specific heat measurements are in considerable disagreement
with each other, the parameters of the heavy hole band cannot be inferred
with any certainty. Estimates range from m* = 0.66 to m* =2.5. Other
experiments have not shown heavy hole effects so clearly; however, see
Lerner (1962). The Fermi level for the light holes is about 0.012 ev, for
the heavy holes, in the range from 0.0006 to 0.002 ev. The overlap between
electron and light hole bands is given by the sum of their Fermi energies:
this is 0.034 ev.

It is natural to attribute the large curvature of the electron band
to the repulsion of some band directly below it. The energy gap between
the valence and conduction bands at this point is believed to lie between
0.01 and 0.05 ev. Values of 0.042 (Wolff, 1961b), 0.046 (Weiner, 1962),
and 0.047 (Brown et al., 1960) have been quoted; however, Brown,
Mavroides, and Lax (1963) find the gap to be 0.015 + 0.005 ev. The band
structure here has been analyzed by Cohen and Blount (1960), Cohen (1961),
and Wolff (1961). In bismuth, the electron Fermi energy is not small
compared to the band gap, and the parabolic relation between energy and
wave vector is only approximate. There is evidence for an energy de-
pendence of the effective mass. The description is based on the work of
Kane (1956b) concerning InSb; but in the following, we will largely
follow the treatment of Cohen (1961).

In bismuth, it is essential to include spin orbit coupling at all stages
of the calculation. Accordingly, we use the Hamiltonian of Eq. (1.64):

_ (E—TV)\ p* n? ) I _
We denote the eigenfunctions of this operator as i,,(k, r), in which k
is the wave vector, # is the band index, and p = 1 or 2 designates the
independent eigenfunctions which are degenerate by time reversal (the
bands must be doubly degenerate throughout the zone). The procedure is
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quite similar to the treatment of a degenerate pair of bands in Section 1.7.
Since it is not our intention to make a detailed calculation of the band
structure from first principles, we will ignore in the following the terms
(E — V)[2mc? and (R/4m2c?) VV - V. We have

Hifyo(k, 1) = En(K)ifn,(K, T) (3.58)

Let the minimum of interest be located at k;,, We expand in terms of
the solutions at that point.

l/l"p(l( r ZA”" n'p! e’(k ko) - rl/’ ko r

The coefficients 4, .- satisfy Eq. (1.65). In that equation, we substitute

np,np

hs = Ak — ky) = p; and V=1II/m. Then we have

2
(E,,(ko> + ;W)A,-p,m + 2 Ajpmp - (ntVlmp) = Ef(k)Ajpme (3.59)
",

n (3.60)
(nz|V]mu) = "lﬁ:z(ko, 1) Vibnu(Ko, 1) @37

Let us designate the two bands separated by the small gap at k; with
n = 0, 1. We are concerned only with the behavior of these bands. We
may eliminate the higher bands by solving for the appropriate coefficients
to first order in p, since only 4. ,, and A4, ,, (» =0, 1) will be large:

ip, 07 e 17

nlVlow . eVile
Ajpme=p" 2[—(1(5 Ajp,0u +m1‘1mly (3.60)

=01

When this expression is substituted into (3.59) the result implies a
coupled set of four equations as #, v run through the values (0, 1) and
(1, 2) respectively. Second order off-diagonal terms are neglected. It
is most convenient to state these equations in matrix form, and it is
evident that we then have the problem of diagonalizing an effective
Hamiltonian H’ which is a 4 X 4 matrix. In order to write this down, it
is convenient to introduce the abbreviations:
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» (0 1[V[n p)(n p|V]O 1)
K,=p-(01[V[ol) + 2 4+ p- :
° @10 am P nzp' Eo (ko) — En(ky)
_p* 1 (11V[np)(mp|V]1 1)
o T2 Rk~ Ey P (861
np

t=p-(01V]L1), u—=p-(01V[]12)
Eg=E (k) — Eq(k) (3.62)

The zero of energy is chosen to be the minimum of band 1: E,(k,) = 0.
Cohen and Blount have shown that time reversal symmetry requires

p-(O2(V11)= —u*;  p-(02[V]12) =t*. (3.63)

The order of the rows and columns in the matrix H' which follows is:
00, 01, 11, 12. Note that a linear term has been included in the first
but not the second of Eqgs. (3.61) because the lower band (0) at k, need
not have a minimum there. Band 1, is, however, flat at k,. The zero
of energy is set at the minimum of band 1, i.e., we put E,(ky) = 0. Then
we have:

K,—E, 0 t u
0 K,—E, —u* t*
H = (3.64)
t* —u K, 0
u* ¢ 0 K,

The eigenvalues of this matrix are doubly degenerate as required by
symmetry, and satisfy the equation:

E? — (Ky+ K; — E)E + [K\(Ky — Eg) — |t|2 — |u|2] =0 (3.65)
The solutions of (3.65) are:
Eio=3(Ko + Ky — Eo) + V 3Ky — Ko + EQ* + i + [u]* (3.66)

The minus sign goes with band 0. In the limit of very small p, we get:

> + Jeof®
Eg

412 + Joe®
Eg

E, =K, + (3.67a)

Eg=Ky— E; — (3.67b)
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The contribution of band 0 to the effective mass in band 1 is given by
the second term of Eq. (3.67a). The first term contains the contributions
from the higher bands. For energies near the Fermi energy, the approx-
imations of (3.67) do not apply, and we must use (3.66) instead.

This model of the band structure contains a larger number of
parameters (matrix elements of vector quantities) than was necessary
in some of the other models discussed. If the location of the minimum
were accurately known, the number of parameters could be reduced.
The general formula (3.65) is adequate to account for the highly elongated
ellipses that are found: the effective masses imply that the coefficient p,2
in |¢|2 4 |u|? is quite small, possibly zero, leaving the other bands to
give the small departure of the effective mass from unity in this direction.
The advantage of using the more complicated E(k) expression (3.66)
rather than the simple empirical formula (3.57) is that (3.66) includes
deviations from parabolic behavior which, because of the small gap,
is important at the Fermi energies. A very large (and negative) g factor
is also predicted (Cohen and Blount, 1960), which has been observed
experimentally (Smith et al., 1960; Everett, 1962).

The location of the band extrema are not accurately known. If
the three ellipsoid model is correct, the conduction band minimum could
be located at either X or L. A single ellipsoid for holes would imply
I' or T; a pair of ellipsoids would be located on the trigonal axis A.

There have been no complete band calculations for bismuth. Two
tight binding studies and one nearly free electron calculation have been
reported. Morita (1949b) considered the bands in the tight binding approx-
imation, including only nearest neighbor potential integrals and neglecting
overlap integrals. Mase (1958) performed a similar study, but included
spin orbit coupling. He constructed character tables for the double group
of bismuth. The atomic configuration was considered to be s2 $3, and
only the p electrons were included. The two-center approximation was
made with nearest neighbors alone considered. The slight overlapping
of bands obtaining small numbers of free electrons and holes characterized
by small effective masses can be regarded as due to the removal of degen-
eracies which would be present in a cubic structure. The effect of this
rhombohedral distortion is probably smaller than the spin orbit splittings.
Harrison (1960c) has studied the Fermi surface in the nearly free
electron approximation.
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3.12 Graphite

Graphite has a layer structure in which planes of atoms arranged in
a hexagonal pattern are stacked and weakly bound to each other. The
atoms in a single layer are covalently bonded while the binding between
planes is of van der Waals character. In fact, a single layer may be
regarded as a large aromatic molecule. In view of these structural
characteristics, it is not surprising that many of the electrical properties,
including the conductivity, exhibit pronounced anisotropy.

kap I
/1Ky
? / N
H// kx H
/ ’
K
H H

FiG. 16. Brillouin zone for graphite. The left hand drawing shows the zone for
a single layer according to Lomer (1955); the right hand drawing is the zone for
the three-dimensional crystal according to Slonczewski and Weiss (1958).

In a first attempt to understand the electronic structure of graphite,
one might investigate the energy bands pertaining to a single layer.
The unit cell for such a layer contains two nonequivalent atoms, and the
Brillouin zone is the hexagon shown in Fig. 16. Points and lines of
symmetry are indicated according to the notation of Lomer (1955) who
has analyzed the symmetry properties of the wave functions in detail.

A simple study of a single graphite layer was performed by Wallace
(1947a) who used the tight binding approximation. The carbon atoms
are considered to be in the configuration sp3. The orbitals which are
formed from functions of symmetry s, p,, and $, lie in the plane of the
layer (g-orbitals). Such orbitals are fully occupied and do not contribute
to the conduction process. The fourth electron has a wave function
with symmetry p,; these orbitals are perpendicular to the layer (7 orbitals).
The 7 electrons are responsible for conduction; it will be seen that both
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holes and electrons exist in the band. Wallace considered only potential
integrals between 7 electron wave functions on nearest neighbors of both
kinds. He treated these as undetermined parameters, and neglected the
lack of orthogonality of functions on different atoms. In this way, he
obtained a parameterization of the band structure of graphite which,
although crude, indicated some of the most important features. The
basic point is that there is degeneracy at the point P between the filled
and the empty x bands. This is actually a consequence of the symmetry
of the layer model. At absolute zero, the lowest zz band would be full,
the upper one empty; however there is no energy gap. The energy depends
linearly on |k — k| in the vicinity of P.

Corbato (1956) has made a very detailed calculation on the basis
of the single layer model and the tight binding approximation. Bloch
functions were constructed including all the ls, 2s, and 2p electrons.
Two-center overlap and potential integrals were included through ninth
neighbors; three-center potential integrals were included througlh fourth
neighbors.

It is worth remarking that the large static diamagnetic susceptibility
of graphite can be explained in terms of the layer model as originating
in the large gradient of the energy in the vicinity of P.

Calculations which take account of the real three-dimensional nature
of the graphite crystal have not been performed in so much detail as
the work on a single layer. In this case there are four atoms in the unit
cell, associated with two layers. The Brillouin zone is a thin, hexagonal
prism shown in Fig. 17. A group theoretical analysis of the three-
dimensional lattice has been given by Carter (1953). It has been
standard to consider the four bands formed from the p, orbitals on the
four atoms in the unit cell. The interaction between z and o orbitals
has usually been neglected (see, however, Johnston, 1956). The inter-
action between layers removes some of the degeneracy predicted by the
layer model for the edges HKH and H' K’ H'. The splittings are small,
of the order of 0.1 ev; but this is large compared to 27 under normal
circumstances and consequently vital in any detailed consideration of
transport properties. There are, in the. three-dimensional case, two
conduction bands and two valence bands of which two are required by
symmetry to be degenerate along the edge. Wallace’s (1947a) three-
dimensional calculation which included only nearest neighbor interactions
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revealed this degeneracy, but showed no overlap of conduction and valence
bands. Calculations by Johnston (1955, 1956) included more distant
neighbors, revealed additional degeneracies near the zone edge, a small
overlap between valence and conduction bands near the edge, and deter-
mined the dependence of £ on £, along the edge.

K kg H Ikl

Fic. 17. Energy bands in graphite along the £, axis according to Nozieres (1958).
The drawing on the right shows a small portion of the band structure in a plane
perpendicular to this axis.

Recent studies of the magnetic susceptibility of graphite (McClure
1957, 1960) have been based on an analysis of the band structure developed
by Slonczewski and Weiss (1958). Since the interesting part of the
zone extends only 19, of the distance from the edge of the zone to the
center, the k- p perturbation theory is useful in determining the variation
of the energy perpendicular to the edge. The dependence of the energy
on k, (measured along the zone edge) can be considered in the tight
binding approximation — which is equivalent to taking the leading term
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in a Fourier series expansion of the energy — since the binding between
planes is weak. The matrix of K- p (where K is a vector perpendicular
to the edge) was constructed on the basis of the states on the edge. The
effective Hamiltonian for this problem is given by Slonczewski and
Weiss and by McClure (1957; also see Nozieres, 1958). Diagonalization
yields the energy levels in the vicinity of the edge. The effective
Hamiltonian contains six parameters corresponding to the various
momentum matrix elements — which can also be interpreted as integrals
from the tight binding approximation.

Possible forms of the energy bands along the edge and perpendicular
to it are illustrated in Fig. 17. The surfaces of constant energy in &-space
are hyperbolas of revolution. It can be seen from the figure that small
numbers of holes and electrons can coexist in the band at 0 °K. The
concentrations of holes and electrons are of the order of 10—%/atom.
It seems possible to obtain numerical values of the parameters in the
Slonczewski-Weiss Hamiltonian which give reasonable agreement with
experimental results concerning the diamagnetic susceptibility, de Haas-
van Alphen effect, and cyclotron resonance (McClure, 1960).

3.13 Summary

The survey of band structure studies given in this chapter has not
been intended to be exhaustive. It should, however, indicate how it is
possible to combine experimental and theoretical results to obtain a
reasonable knowledge of the electronic structure of particular materials.

Our ability to make quantitative calculations of energy levels from
first principles is by no means as complete as is desired. Great progress
has, however, been made in recent years. It is now possible to make
reasonably accurate calculations of the band structure associated with
a given potential, with levels determined at a fairly large number of
points in the Brillouin zone. Much additional effort is required before
the self-consistency problem is under adequate control, and beyond that
lies the problem of the effects of electron-electron and electron-phonon
interactions.

When energy band calculations are used qualitatively to describe
and interpret the results of experiments, or when simplified Hamiltonians
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with disposable parameters are used for similar purposes, a very consid-
erable measure of success can often be attained. There is little doubt
that the general concepts and language of band theory are adequate
to describe a large body of experimental information. This semiempirical
usage of band theory is currently quite popular, and probably has many
years of life ahead. It remains an unfortunate fact that sometimes the
most precise and careful calculations have the least quantitative success.






Chapter 4

Point Impurities and External Fields

4.1 General Discussion

In this chapter, we are concerned with solutions of a Schrédinger
equation of the form

(Hy + U)W = ih 0%]at 4.1)

where H, is a Hamiltonian which contains a periodic potential, and U
is a perturbation. We will consider three basic types of perturbation:
a point impurity, an external magnetic field, and an external electric
field. We will first study uniform fields, but will subsequently discuss
the response of band electrons to electromagnetic radiation.

The eigenfunctions of the unperturbed Hamiltonian are Bloch
functions:

Ho (K, 1) = Eo a(k, 1) (4.2)

where k is the wave vector and » is the band index. The functions ) have
the property that:

a(k, 1) = X T u,(k, 1) (4.3)

in which #,(k, r) has the same periodicity as the potential. We recall
from Section 2.11 that we can form Wannier functions, which are localized
around lattice sites R, by making a linear combination of the i,(k,r)
which belong to a single band

oz
(2732

215

a,r—R,) = Ee—"k'Rv (K, 1) d3F (2.168a)
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in which @ is the volume of the unit cell. The integralin (2.168a) includes
all k inside or on the surface of the Brillouin zone. The inverse trans-
formation to (2.168a) is
Q2 v kR,
(K, T) = G D & ®ra,r—R,) (2.170)
Equation (2.168a) is a special case of a general expression for the
expansion of an arbitrary function in the Bloch functions i,(k, r) which

we assume to be a complete set of functions with the following orthonorm-
ality properties:

b (K, )i (K, T) A3 = G, 6(k — K) (4.4)

entire
crystal

The Bloch functions are natural choices for basis functions in which to
expand the solutions of (4.1). One writes

)= j%(k>¢n<k, r) &k (4.5)

n

It is easily verified that Eq. (4.1) leads to the following equation for
the expansion coefficients ¢,(Kk):

S a ’ ’ ’ ’
[E,.(k) — ik 52] ga(K) + Zlvjd"k PE|Un Ky gu(K) =0  (4.6)
in which the matrix element is given by

(nk|Un'k'y = Ez/,: (&, ©) Ui, (K', T) d3r (4.7)

The representation which is obtained in this way has been called the
“crystal momentum representation” by Adams, who has wused it
extensively (Adams, 1952, 1953, 1957).

A variant of the crystal momentum representation has been intro-
duced by Luttinger and Kohn (1955). They choose a set of basis functions
related to Bloch functions for one particular point in the band. Let these
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functions be denoted by y,(k, r), and let k, be some particular point
in the band (usually a maximum or a minimum):

n (6, 1) = K= 10T (ke ) (4.8)

These functions were introduced in Section 1.7. The properties of this
set will be discussed in more detail here. The x,(k, r) may easily be
shown to form a complete orthonormal set if the i, (k, r) do. There are
two points to consider: Let f(r) be an arbitrary function of position which
can be expanded in the Bloch functions

=2 ﬂgn(km(k, r) dk

n

=) Egn(k) ek T, (k, 1) d3k 4. 9)

Since #,(k, r) and u,(k,, r) have the same periodicity, we can write
Un(K, 1) = D by (K) s (Ko, T) (4.10)

If we substitute this into (4.9), we have

=2 Sg'n (k) (K, ¥) d3k (4.11)
where
Za(k) = e%T D7 byrn(K)gu (K) (4.12)

Hence, neglecting questions of convergence, if f(r) can be expanded in
Bloch functions, it can also be expanded in the y,. To prove the ortho-
normality of the y,, consider the integral

2 (K, 1) (K, T) A3 = S ¢k K) X ¥ (Ko T) Uy (Ko, T)AH (4.13)

entire
crystal
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The function ), (K, r)u, (K, r) is periodic in the crystal and so may
be expressed as a Fourier series

U (Ko, D)ttn(ko, 1) = D) By e Fomt (4.14)

On substitution into (4.13), we obtain
(2m)3 > 6(k — Kn — kK')Bo" (4.15)

We suppose k and k' are inside the zone so that k — k’ is not a reciprocal
lattice vector. Then only the term with m = 0 in (4.15) can contribute.
However,

B — __ S s (K, )t (K, )& T 43y

cell

The u, are orthogonal in a unit cell, and are normalized! so that

n'n 1 * 1
By = !70 j un’(k{p I‘)M”(ko, I‘) adr = W O (416)
cell
It then follows that
Exf'(k’, 1) xn(k, 1) @3 = dpu 8(k — k') (4.17)

In accord with (4.11), we expand the solution of (4.1) in the Kohn-
Luttinger functions y,(k, r)

)= 5 A (K) gk, 1) 33 (4.18)

n

! This choice of normalization for the u, can be seen to be consistent with the
normalization of the Bloch functions [Eq. (4.4)] when the summation relations of
Appendix 2 are used.
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The representation of the Hamiltonian on the basis of the y,(k,r) is
somewhat more complicated than in the case of the i, (k, r) since the
«’s are not eigenfunctions of H;. For simplicity in the calculation of
matrix elements, we shall set k, = 0 and ignore any possible degeneracy
of the states at k,. Afterwards, these restrictions will be removed. The
matrix elements of H, are then determined in the following manner:

(nk|Hyn' k') = S in (K, 1) Hy (K, T) d% (4.19)

entire
crystal

K - K2 K2
L

_ gei(k'_k)-ru: (r) [En' + % u,,:(r) d3r

2m
We will use parentheses to indicate the matrix elements in the Kohn-
Luttinger formalism, and reserve the angular brackets () for the CMR.
Also, we have set E, (k) = E,, and u,(Kkg, r) = u,(r). Since p = (%/7)p,
the function multiplying the exponential in Eq. (4.19) is periodic, so
that the argument that leads to (4.17) also applies in this case. We can
now write

IR AN (27'[)3 ’ * lﬂ h2 k2 3
(nk|Hon' k') = ToN Ok —K) | u, () [Ew + 7 - + ™ 1 (v) d37
cell
, h?k? K pun
= ok — k') [6,,,,: (En—l— o ) + ET] (4.20)

In the last line of (4.20) we have introduced

Pt = (Z’) i S Uy (0P (¥) d37 (4.21)
0

Consequently, the equation satisfied by the expansion coefficients 4,,(k)
in Eq. (4.18) is

h2k? 0 hk
= h—| A _. ot A (K 4.22
E, + 5 ih at} (k) + ZP (k) ( )

n!

+ > Ed3 k' (nk|Ujn' K') Aw(K') = 0

n!
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The Wannier functions (Wannier, 1937; Slater, 1949; Adams, 1952;
Koster, 1954; Koster and Slater, 1954a,b; des Cloizeaux, 1963) are a
third possible set of functions for the expansion of the wave function of
Eq. (4.1). Although these functions are not solutions of the Schrédinger
equation, they are orthonormal and localized so that the set is particularly
useful in the case of localized perturbations. In Section 2.11 we verified
their orthonormality, and saw that they satisfied the equation

Hyan(r — 2@@ R,)a,(r — R;)

where &,(R;) is a Fourier coefficient of the energy (note that the band
index » is the same on both sides):

E k) = > &Ry e ™™
!
The wave function is expanded in the Wannier function by writing
P ZB J)an(t — R,) (4.23)
We find that the B, satisfy the equation:

P [(éa,,(n,t —R,) — i, a) St + Un(R, ,)} Bi(R)—0  (424)

vl

In equation (4.24), U(R,, R,) is the matrix element of the perturbation
between two Wannier functions:

Uu(R,, R,) = ja: (r — RYU@ayr — R,) dr (4.25)

A discrete set of functions has been employed for the expansion of the
wave function in the present case (whereas in both the CMR and the
Kohn-Luttinger representations, the functions are characterized by a
continuous variable k). Equations (4.24) are difference equations.
However, for slowly varying potentials, they may be replaced by a
differential equation.
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4.2 Point Impurities

As an aid in understanding impurity states, we will study a simple
example first discussed by Koster and Slater (Koster and Slater, 1954a).
We suppose that the matrix element (nk|U[n' k') which appears in
Eq. (4.6) has the value

(k| U’ K'Y = [V 2/(27)%] Suw (4.26)

in which £ is the volume of the atomic cell and (27)3/Q is the volume of the
Brillouin zone. Except for diagonality in the band index, the matrix
element corresponds to a delta function potential of strength V2/(2x)3

located at the origin. The solution is stationary with energy E. Equation
(4.6) becomes

Vo8
En(k) — E)pu (k) + 2\ @, (k') d3k’ = .
(En(k) )¢()f(2ﬂ)3j¢( ) a3k =0 (4.27)
An equation for the energy is obtained by dividing (4.27) by E (k) — E
and integrating over the Brillouin zone. We assume for the present
that E,(k) — E does not vanish:

Qv, 1

. G(E)
<2n>35 Em

_EzVojde =1 (4.28)

We have used the definition of the density of states per volume £ and a
single spin direction. The nature of the solutions of Eq. (4.28) may be
more readily appreciated if we imagine that the unperturbed levels are
discrete (N of them, say). In this case we consider a function

1B =x 3

n

1
E—E,

The function f(E) has poles at each of the unperturbed energies, and in
between varies from — oo to 4 oo (see Fig. 18). The energies of the
perturbed states are the energies for which the function has the value
1/V,. Each eigenvalue is shifted by the perturbation, but not so strongly
as to cross the energy of an unperturbed solution. For energies lower
than the lowest eigenvalues, the function is negative, going to zero at
E = — . If V, is negative, there will also be a root in this region,
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representing a state which is split off from the band. (If V,is positive, the
split-off state is at the top of the band.) The total number of states, N,

is not changed by the perturbation. In the limit of a continuous distribu-
tion of energies, the energies of the states in the band are unaltered,

40

JE)

120

]

20

-40

Fic. 18. The determination of the energies of impurity states in the Slater-

Koster model is illustrated in the case of a ““band’” of six levels. The function

f(E) = (1/N) X, 1/(E — E,) is shown. The energies of the perturbed states are

found from the intersections of f(E) with the horizontal line which corresponds
to Vg = — 5/3.
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except that a single state drops below the band for negative V, or rises
above it for positive V.

We must know E(k) to determine the energy of the split-off state.
The nearest neighbor tight binding formula for a one-dimensional crystal
furnishes a simple example:

E(k) = Ey + 2E, cos kd (4.29)

where d is the distance between atoms (we suppose E; is negative). Then
(4.28) becomes

nfd
W, o
2n ) E,— E + 2E,coskd
fa

-7,

—1 (4.30)

(since in the one-dimensional case, the Brillouin zone has a “volume”
of 2x/d). The integral in (4.30) is standard, and we find after solving
the resulting equation

V2 1/2
E=E,+2E, [1 + Elz} (4.31)
This result was also derived by Koster and Slater from the difference
equation (4.24) in the Wannier function representation.

The energy of the lowest state in the original band was E, + 2E,.
The energy of the split-off state depends quadratically on Vif V, < 2E,,
but if V, is large, the dependence on V', becomes linear, and the split-off
state goes to an energy E, + V,.

In order to study the wave function of the split-off state, it is desirable
to transform from the representation involving Bloch functions to that
based on Wannier functions. The transformation may be determined
as follows: We multiply Eq. (4.23) by aX(r — R,) and integrate over r.
Since the Wannier functions are orthonormal, we have

B.(R,) = S‘P(r)a: (r — R,)d% (4.32)

We now substitute Eq. (4.5) for ¥(r) into (4.32), and expand the Bloch
functions in Wannier functions, and then make use of the orthonormality
of the Wannier functions. The result is
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e
Ba(R,) = (2_7)?725 X P (k) Ak (4.33)

It follows from (4.27) that

vz B.,(0)
oK) = — oo Vo g - E (4.34)
This is substituted into (4.33). We find
Vo2 ¢ By 3
B.(R,) = @m)° B(0) EE —E® a3k (4.352)

In the one-dimensional model, we put k- R, = kvd where » is an integer
and 4 is the distance between atoms. Then

njd
) 1
tkvd
Ba(») o Se s =5 (4.35b)
— njd

It is necessary to substitute Eqs. (4.29) and (4.31) into (4.35), and then
carry out the integration. The work is simplified if we define a quantity

y by

Vo
sinh yd =

2 (4.36)

(we are assuming that ¥, and E; have the same sign). Using this (and
dropping the band index, %)

njd

1 gikvd
B —
(v) o< 2E, 5 coshyd + cos kd ak (4.37)

—~njd

Only the even part of the exponential need be retained. The integral can
easily be put into a standard form.? The result gives:

B(») = B(0) ¢~ "4 (4.38)

2 Standard form: j( 9 VI—.F LT
cos nx 7T — -
1+ pcosx 1 — p2 [ P J
2 e
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Thus the component of the wave function in successive cells decreases
exponentially with increasing distance from the impurity, as would be
intuitively expected for a bound state.

An exact solution of the model problem has also been obtained by
Koster and Slater (1954b) for a single impurity in a three-dimensional
simple cubic crystal for which the energy may be expressed as

E =E,+ 2E,(cosk.a + cos kya + cos k; a) (4.39)

(a is the lattice constant). In this case, we have in place of Eq. (4.30):

nla nja nja
% j dk, S dk,y, S dk; [Ey— E + 2E,(cosk,a + cos kya + cos k. a)] !
7
— nja — nja —nfa
= (; de E‘dy Sdz[E’ — (cos x 4 cosy + cosz)]" 1= —1 (4.40)
7
0 0

In the second line of (4.40), we have put x =%, 4, etc.; E' = (E, — E)[2|E,|,
and V' = V,[2|E,|. This integral may be simplified by introducing an
auxiliary variable ¢. Instead of the integral in (4.40), we write

dzexp {— [E’ — (cos x + cos ¥ -+ cos 2)]¢}

q ;j
(S
!

AN
ey
!
®
e
!
<
Oty

The integral may be simplified with the substitution of an integral expres-
sion for the Bessel function of imaginary argument Iy(¢) (Jeffreys and
Jeffreys, 1950)

Iyt = lgje‘w“dx (4.41)
0
Then we have
Vo' S dte Bt I3t dt= —1 (4.42)
0
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This equation must be solved numerically. We can gain insight into the
nature of the solution by some simple approximations.

If V,’ is large and negative, we expect the split-off state to lie well
below the band, which means that E’ must be large. Then the integral
may be approximated by retaining only the lowest term in [y(¢), which is
unity. Then we get in this limit:

=—1, or E=E,+ 7V, (4.43)

The other limit is more difficult. In the limit of large ¢, Iy(¢) o ¢'. The
integral in Eq. (4.42) must then diverge if £’ << 3, so that no solution
is obtained. The limiting condition E’ = 3 corresponds to E = E, + 6E;,
which is the energy of the state at the bottom of the band (¥ = 0). The
impurity state must fall below the band. For E’ = 3, the integral in
(4.42) has been evaluated by Koster and Slater, who find for this case that
Vo~ — 4|E,|. We see that, in contradiction to the one-dimensional
example, there is a minimum value of V, below which a split-off state
will not be formed. It is possible to obtain an expansion of the integral
in (4.42) in the neighborhood of E’ = 3. When this is done, one finds
that the energy of the bound state depends quadratically on the difference
between the potential, and the value that first produces a bound state.

To show this, we define the quantity J(E’} as the integral in (4.40):

14 n

JE)= del‘dy Edz[E’ — (cos x 4 cos y + cosz)]1 (4.44)
0

0 0

We wish to find the value of this integral for E’ slightly larger than 3,
Thus we calculate

JEY—TJ3) =jdxjdyjdz X
6 0 0

1 1
[E’ — (cos x + cosy +cosz) 3 — (cos x + cos y + cos 2)
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If we expand the cosines in powers of x, then the integrals are dominated
by the values at small «, ¥, z. This in turn suggests that we go to spherical
coordinates, and make the upper limit infinite.

oo}

JE) =76 = %gj [ﬁ/g — |

This procedure is valid when E’ — 3 is small. The factor of 8 in the
denominator results since only one octant of a sphere is considered. The
integral can now be reduced to an elementary one, and we find

—7!2

JE) — V2 — )L (4.45)

This result is substituted in (4.40), from which we find
J@) 1
E'—3=2n%|— - (4.46)
7 Vo

We do not get a bound state unless V' < — #=3/J(3). We are only inter-
ested in small values of E’ — 3, in which case V' will not differ greatly
from the initial value. The bracket may then be expanded to give

E' —3=2n2 (]752))4[ o+ ;23)] ’ (4.47)

This confirms the quadratic dependence of E’ previously mentioned.
The quantity J(3)/n® has the value 0.493.

An alternative attack on the point impurity problem in which one
works directly with the difference equation for the Wannier functions is
of some interest, particularly in view of recent applications to the problem
of impurity states in metals (Wolff, 1961a; Clogston, 1962). Here we
wish to describe not only the localized states outside the band but the
virtual states or resonances in the band as well. The method of solution
was given by Lax (1954). A Green’s function is found for Eq. (4.24),
which reads (for a stationary state)

Z {[6a(R  E8,)0u + UsRuR)}Bi(R) =0 (4.48)
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Let us consider the function

0 S (B, ~R))
i ) p— 3
GolRy — Ry) = ¢ Qﬂ)ajd P B (4.49)

Discussion of the treatment of the singularities of the denominator will
be postponed temporarily. Let us calculate

D [64(R, — R,) — E8,]9(R, —R;)

=2 (iidi*k'eik"m” Y (EBuk) — E)9,(R, — R,)

27)3
00 kR w1\ En(K) — E
_ s\ gap = ik Ri—K R, e—ik'— k) R, -E
= (Zn)'*j”g“e ’ ”(Z )E,,(k)-E
a (;nﬁjdak, TR = — 0,

We have employed summation and integral relations from Appendix 2
[Eqgs. (A2.9b) and (A2.10)]. Evidently ¥, is a Green’s function for the
nth band.

It is easy to verify that

BJR) =¢* i 68, + D %, (R; — R)U, (R, R,)B.(R,)  (4.50)

nu

is a formal equation, similar to an integral equation, which replaces
(4.48). The first term, which represents an incoming wave in the mth
band, is a solution of the homogeneous equation. Except for this term,
which exists only when E lies inside the band, Eq. (4.50) is the same as
(4.35a) for the Slater-Koster model.

The calculation of the Green’s function may be difficult. First,
it is necessary to decide how one intends to go around the singularities
of the denominator. The Green’s function is not well defined until this
is specified. One can obtain standing wave solutions or propagating
solutions. The propagating wave solutions are the more relevant for our
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purposes. These are obtained by inserting a small, positive imaginary
part in the denominator, which is allowed to go to zero after evaluation
KR, —R))

Q
—_ ) = i 3
9,R, — R;) = lim o Jd % (4.51)

& —>0t

The quantity %,(0) is of considerable interest. This can be expressed
formally in terms of the density of states, G(E), for a volume 2, and
a single spin direction which is given by

2 d

in which the integral includes all k space in which the energy is E or less.

o [eEyaE [ GE) |

in which the symbol P indicates that the principal value of the integral is
to be obtained.

We also require the asymptotic form of the Green’s function. In the
limit of large |R|, Eq. (4.51) for ¢,(R) may be evaluated by the method
of stationary phase. A general expression has been given by Koster (1954)
and Lifshitz (1956). We will confine our attention to the situation in
which E is near the bottom of a spherical band. We approximate E(k) as:

Ek) = E, + E, k?
Then, for large R

, 0 k' sink' R ,  — et
Gul) = I o R SE B, EF T TEER
0

(4.53)

where k& = [(E — Eg)/E,]"2

We now consider the Slater-Koster model in which the perturbation
is localized in the cell at the origin

Un(Ry, Ry) = Vg 81 60 600 (4.54)
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It is possible to solve the equation (4.50) for B,(R,) in this model. The
result is (taking the incident wave to be in the xnth band).

(4.55)

We are interested in the limit of large R;, in which the asymptotic expres-
sion for ¢, may be used
K-R, 14%¢ ™

BuBy) =" — B =V, %0)) R, (4.56)

The solution evidently contains an incident wave and a spherical
scattered wave. The scattering is s-wave because the perturbing potential
is localized in the cell at the origin. The conventional relation between
the scattering amplitude and the phase shift may be applied to determine
the phase shift. If f(0) is the scattering amplitude, we have (L. I. Schiff,
1955)

@

-

/(6) = le (20 -+ 1)(¢¥% — 1) Py(cos 6) (4.57)

2=0

In the present case, only the term with / = 0 is present, and the scattering
amplitude is just the coefficient of the scattered wave. The equation for
G is

e%sindy — Vo2
R anEy(l — V,%,0))

(4.58)

If use is made of the expression for the density of states of a spherical
band in the form,

0k

CE) = g2E,

Eq. (4.58) may be solved and a real §, determined.

(4.59)

b — tan-t [— nVOG(E)]

1—I(E)V,
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in which I(E) is the real part of ¢,(0): namely
9,.(0) = I(E) — inG(E)

An important sum rule has been derived by Friedel (1958) concerning
the phase shifts §, for more realistic impurity potentials. Suppose an
impurity center is introduced into a metal. The center has a nuclear
charge Z units greater than that of the host. We suppose the scattered
wave, when analyzed into its component angular momenta shows a set
of phase shifts ¢, (we do not restrict ourselves to the Slater-Koster model
at this point): Suppose further that the metal is in the form of a sphere
whose radius (a macroscopic quantity) is R. All the electron wave func-
tions are quantized within this sphere. For the I/th partial scattered
wave, we have

ER + 8(E) = Nn

where N is an integer. For a wave of wave vector k + Ak, the smallest
change on the right can be #. Hence, the interval in 2 between two suc-
cessive waves is

4

k=% + (déydk)

The number of states per unit increment of % is just the reciprocal of
this quantity. Evidently the perturbation changes the number of states
by an amount 1/n(dd,/dk). The total change in the number of states
up to some particular value of &, considering all / values and the (2/ + 1)
substates for each [, is just (1/m) 2,2 + 1)§,(). In order that the
perturbation be screened at large distances, it is necessary to bring
Z|2 states below the Fermi level, since each screening “bound” level
can be occupied by one electron of each spin. Hence we have

% D@L+ 1)oy(Er) = Z (4.60)

This is the Friedel sum rule.

We shall now discuss the behavior of I(E) and the phase shift §,
in the Slater-Koster model. The determination of I(E) is, in general,
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quite difficult since the density of states G(E) may be quite complicated.3
Some general features may be determined, however, without a detailed
calculation. The density of states is finite, zero outside of a finite interval
on the energy axis (bounded by E, and £, say), continuous and positive
everywhere in that interval. Then for E < E, I(E) is negative, but
increasing (decreasing in magnitude). For E > E,, I(E) is positive

Fi1c. 19. I(E), the Hilbert transform of the density of states is shown schema-
tically for a simple G(E).

and decreasing. Hence the qualitative behavior of the function must be
as shown in Fig. 19. Additional maxima and minima might conceivably
be present for functions G(E) more complex than the one illustrated
here.

3 For the E(£) given in (4.39), the expressions for I(E) and G(E) may be reduced
to single integrals, which have been evaluated numerically by Koster and Slater
(1954Db)

I(E) = S Jo¥(t) sin E” t dt
1]

@

= — | Jo%(t) cos E’' tat
E14
0

1
G(E)

in which J, is an ordinary Bessel function and E’ = (E, — E)/2|E,|.
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The behavior of the phase shift as a function of energy is governed
by the intersections of I(E) with 1/V,. There are evidently either zero
or an even number of these. If an intersection occurs for E < E, a bound
state exists, as was shown in the previous section (we always consider
V, negative). For such a condition %,(0) is real, and the £ which occurs
in the asymptotic expansion of #,(k) is purely imaginary, so that the
wave function coefficients B(R) decrease exponentially. For a weaker
potential the point of intersection moves to energies E > E,. There
is then no bound state, but rather a resonance. At the intersection the
phase shift has the value x/2. This corresponds, when ¢ is increasing,
to a maximum of the scattering amplitude and, hence, of the cross section.
A virtual state is said to exist under these circumstances. If the potential
is strong enough so that a bound state exists, I(E;)V,> 1, so that
the phase shift at the bottom of the band is z. This behavior is charac-
teristic of phase shifts in the presence of bound states in general. The
consistency of this result with the Friedel sum rule will be observed:
Of course, if the impurity potential is sufficiently weak, neither bound
states nor resonances will exist.

A resonant state is not arbitrarily sharp, but has a certain width.
This may be defined by comparing the density of states near the resonance
with that which would be expected for a hypothetical level of complex
energy E, — ¢I. The level width, I', is found to be (for the Koster-
Slater model)

Im G,(0) ar\-1
[=— = = —aG(Ey) (d—E)
Re (EE %(O))E

E,
in which E, is the energy of the resonance. Since I" must be positive,
we see that a resonance can occur only when 4I/dE is negative.

4.3 The Effective Mass Equation

The Koster-Slater model of an impurity center has yielded a soluble
problem but not a practical procedure for determining the positions of
actual impurity levels in real crystals. We wish to develop an equation
in this section which will enable the approximate calculation of the
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influence of localized perturbations on real crystals. The starting point
is Eq. (4.22), which is the one-electron Schrédinger equation in the
representation of Luttinger and Kohn. We shall be concerned with
stationary state solutions (energy E) of (4.22). A principal objective
is to obtain an equation which pertains to a single band.

The potential and the momentum are the two sources of interband
matrix elements in (4.22). The matrix elements of the potential can
be written as:

(nk|Unw' k') = Seﬂk'—krr U () un' (r) tew(r) d2r (4.61)
Y : S e KB T () a3y

= 273 DBy Uk — k' + K,)

in which U(k — k' 4+ K,)) is a Fourier coefficient of the potential U:

U(k) = E e~ U(r) d3r (4.62)

entire
crystal

and we have substituted (4.14). At this point we assume that the potential
U is sensibly constant within a unit cell, so that the Fourier coefficients
of the potential in (4.48) which involve nonzero reciprocal lattice vectors
K,, may be discarded. This is a fundamental limiting approximation of
the present method. To the extent this can be done, only the term B‘(}“/
survives in (4.61), and this quantity is given in (4.16). We have

(nk|U|n' k') = dpw Uk — K) (4.63)
Substitution of Eq. (4.63) converts Eq. (4.22) into the form

2 k2
2m

[E,, + E]A,xk) 0 D b All) (4.64)

jd"k’ Uk — k) Aq(K) = 0

The only remaining interband matrix elements are those associated with
the momentum.
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The procedure developed for removing these elements depends on
the assumption that k in (4.64) is small: Terms higher than second
order in k will be neglected. A unitary transformation can then be con-
structed which removes the offending element in (4.64). The technique
could be extended to higher order terms.

In general, if we have an eigenvalue equation

Hyf=Ey¢s (4.65)
and make the unitary transformation
b=eSg (4.66)

in which S is Hermitean; the transformed eigenvalue equation
Hp=Egp (4.67)

is obtained in which the transformed Hamiltonian A is given by

H = ¢S He'S (4.68)

If S is in some sense ‘‘small,” the exponential functions in (4.68) can
be expanded. Terms of third and higher order in S are neglected.

H=(1—iS— }SYH(1 +14S — }S% = H +i[H,S] — }[[H,S],S]

(4.69)
in which the square bracket denotes the commutator:
[H,S]=HS — SH
Let us introduce the abbreviations H,, H, through:
(nk|Hy|n' K') :(E,,+ h;f) S O(k — K') (4.70a)
(nk|H, |0 k') = hkTp 8(k — k) (4.70b)
Equation (4.64) is of the form (4.65) with
H=H,+H +U (4.71)

The off diagonal terms of (4.64) can be eliminated to first order by a
unitary transformation provided S is given through
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i[H, S]= — H, (4.72)

The matrix elements of S in the representation employed are determined
to be

iR|H ' &) K Py
En —_ En' - MWpn’

(nk|S|n' k') = ok — k') for n#£w

=0 if n=mn' (4.73)

where fw,,  =E, — E,..
The transformed Hamiltonian, including terms of second order in
S can now be found. Note that

i[Hy, S] — }[[Hy, S], S]1= }i[H,, 5]
We obtain
H=Hy+ U+i[U,S]— }[[U,S],S]+}i[H, S]  (4.74)

The matrix elements of the last term in (4.74) can be evaluated easily,
since both H; and S are diagonal with respect to k and k’:

(nk|[Hy, S1in' ') = o(k — ) X [(nk|H, |n" K) (0" K[S|n’ k) —

n!

(k|S " K)o K|,y [ )]

— ihd(k — k) Z(k'p””“)(k'p"”"')[ L1 ] (4.75)

1’}1,2 Wyttyt Waytty

n't

The matrix elements of [U, S] are found by a similar procedure (note
that U is diagonal in the band index, but not in k).

(nk|[U, S]|n' k') = £d3k”(nk|U|nk") (nk"'|S|n’ k') — (4.76)

Sd3k"(nk|5|n’ k") (n' kK" |Un k')

—iK —K) 2 Uk k) for mEan

MWpp

=0 if n=n'
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This term contains interband matrix elements and is of first order
in k. However, the momentum matrix elements are reduced by a factor
which is the ratio of a Fourier coefficient of potential to an interband
energy difference. Further, the contribution from such terms can only
come as a second order perturbation, since there are no diagonal matrix
elements. In second order, this factor Ujw is effectively squared. We
will suppose that such contributions are negligible. This implies we
also will neglect the second order term [[U, S], S]. Further, to second
order in k, we can neglect the off-diagonal (in the band index) elements
in (4.75). These could be eliminated by a further unitary transformation
which would introduce corrections to the Hamiltonian of higher than
second order in k.

Consequently, we have in place of (4.64) (we write C = ¢~ * 4 for
the wave function):

M= Wyt

k2 k2 K Prunr) (K Purin
Eut 5, IR gL DIl | )—E}C,,(k)Jr (4.77)

Ed“k Uk — K') Ca(k’) =0

We now observe that the first three terms in (4.77) are equivalent
to the expression given in (1.37) for the energy as a function of wave
vector to second order in k, so we replace those terms by E,(k):

(En(k) — E)Ca(K) + Sd3k’ Uk — K)Cp(k') =0 (4.78)

This equation resembles the ordinary Schrédinger equation in
momentum space for one particle in the field of the potential U. There
is one principle difference that the effective mass m*, rather than the
free electron mass m,, is involved. All the effects of the crystal potential
are incorporated in the effective mass.

The reduction of (4.78) to a differential equation in ordinary space
is, however, only approximate. We define a function F,(r) by

For) = je“‘"C,.(k) a3k (4.79)
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The integration in (4.79) includes only the first Brillouin zone, rather
than all of k-space as is customary in the Fourier transformation. The
manipulation of Fourier transformations is usually aided by the delta
function, which is ordinarily defined by

]. > ’
6(r—r’):W S ok (r—1") g3p
all

k — space

In the present case, it is desirable to define a §-like function

Adr =1) = ﬁ jeik'ﬂ—f’) d3k (4.80)

BZ

We are concerned here with arbitrary values of r and r’. A similar object
has been introduced in Appendix 2, Eq. (A2.10), for the case in which
r and r’ are direct lattice vectors. The function* A4 evidently has the
property that

A(r) &% =1 (4.81)
all space

For |r| large compared to a lattice spacing, A(r) oscillates and decreases
as r~3. For functions of position f(r) which are slowly varying and hence
extend over many cells, we may treat A(r) as a delta function

EA(I‘ —1)f(r") d3" ~ f{x) (4.82)

One can qualitatively estimate that the error involved is of the order of
(a/a;)® where a is the lattice constant, and a; is some measure of the
“extent” of f(r). This is comparable to the error introduced by neglect
of the higher Fourier coefficients of the impurity potential and of the
neglect of the commutator [U, S]. All these errors are negligible for
slowly varying impurity potentials.

4 For a simple cubic lattice (lattice parameter a) we find

1 sin mx/a sin ny/a sin nzla
A@r) = —

nd xyz
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To accomplish the transformation of (4.78) to real space, we multiply

by ¢*'F and integrate over the Brillouin zone. Let us consider the
term

BE,,(k)C,,(k) ek T3k (4.83)
E, (k) can be expressed as
Enk) = En+ > aiikib; (4.84)
6]

where a;; is the reciprocal effective mass tensor given implicitly in (4.77).
Terms of higher than second order in k are neglected. On substitution
into (4.83) we obtain

E, F”(I') + &ij SI% k,‘ ek r Cn(k) d3r (485)
Al 1 o 1 ¢\ . 1 .
= EnFn(r) + 2( 2271 (1_ ax,) (7 5};)}”(1') = En (7 17)1',,(1')
i1

The expression E,[(1/7)}'] means that we are to substitute (1/i) 9/dx; for

k; wherever k; appears in the expression for the energy as a function
of %.
The last term of (4.78) is transformed as follows:

H Uk — k') ¢%TC,(K') d3k d3F' (4.86)

B (2‘1 B Sﬂ U(r') e= 0k =K)-x' gik x C, (k') @' d3k A3k’
TT

= Sd‘*r' Ur’) A(r — r')Fo(r') = U(r)F(r)

In the last step, we have used the approximation of Eq. (4.82). We
finally obtain the transformed effective mass equation

(E,, (71 V) — E) Fu(r) + UMFa(r) =0 (4.87)
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To obtain the wave function, we return to Eq. (4.18). The transforma-
tion (4.66) implies that

Auk) = D 5 (nk|eS|n’ K')Co(K') d3F’ (4.88)

k . p,m/

m Wy’
”l

Cn’(k) + ...

The leading term in A4, is just C,, and we neglect the first order correction.
To this order

vf(r)=2§ (k) €% X1, (x d‘%—Zun Folt) = 2 dnl0)Flr)

n

(4.89)

In the last step of (4.89), we have used the fact that our band extremum
occurs at £ = 0. This equation does not connect the bands. If we are
interested in the wave function associated with a particular impurity
level under the conduction band, for instance (# = c¢), we have, finally,

Y = (0, 1) F(r) (4.90)

The impurity wave function is then an oscillatory band wave function
modified by a slowly varying, but exponentially decreasing, envelop
function F.

The effective mass equation (4.87) will not be valid in regions of
space where the potential is rapidly varying — as for instance in the
vicinity of a cell containing an impurity atom.

The extension of this procedure to the case in which the band extremum
is not at the origin, but is nondegenerate is easy. We see from (4.8)
that we now make expansions in the quantity Jk, where dk = k — k.
The derivation proceeds just as before. In place of (4.84), we have

En(K) = Ey(Ky 4 0k) = En(ko) + >, ij Ok; OF; (4.91)
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This time we replace 6k, by (1/i)9/dx,, so that the extension of (4.87) is

[E,, (ko + 17 17) - E]F,,(r) + U(r)Falr) =0 (4.92)

This equation is interpreted as requiring an expansion of the energy to
second order in (1/i)p.

When the band extremum is not located at k = 0, there generally will
be more than one extremum of the same energy. If the potential U has
the point symmetry of the crystal, then impurity states associated with
each extremum will have the same energy, and it is necessary to form
linear combinations of these solutions. The appropriate linear combina-
tion which gives, for instance, the state of lowest energy is not determined
within the effective mass theory as presented, but rather requires consi-
deration of the first order corrections. On physical grounds, one gen-
erally expects a completely symmetric linear combination to have lowest
energy.

We will briefly discuss the application of the effective mass formalism
to real crystals. Consider, for example, the case of a donor impurity
with a single excess electron in a semiconductor (for instance, phosphorus
in silicon or arsenic in germanium). In this case, the potential U(7) at
large distances from the impurity will be that of a single point charge,
screened by the dielectric constant, «, of the host crystal. The use of
the dielectric constant in this connection seems quite plausible on physical
grounds when the electron is far from the impurity center, and has been
rigorously justified by Kohn (1958) (see Appendix 3). Of course, the
potential will be different near the impurity. First, we consider the case of
a spherical band, effective mass m*. Then, if we set the zero of energy
to be the conduction band minimum, Eq. (4.87) becomes

K2
2m*

2
veF — © F — EF (4.93)
KY

This is, of course, just a simple hydrogenic problem, for which the energies
are

m* ¢4

En=— 2x% n? B2

(4.94)
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If we take « = 16, and an average effective mass m* = 0.12, which are
roughly appropriate for germanium, we find

E, = — (0.0064/n2% ev

It is interesting to note that the effective “Bohr radius” for the lowest
orbit is xk2/m*e?, which is about 70 A. The orbit includes thousands
of cells. Experimental impurity ionization energies are slightly less
than twice as large (in magnitude), about 0.010 ev. The worst approx-
imation here is the use of the average effective mass, and this can be
improved. We let the x-axis lie along the (1, 1, 1) axis through the band
minimum (effective mass m, in this direction; m, in the directions per-
pendicular to it). Then we get in place of (4.80)
K2 o2 h? 0?2 02 e?
(ayz + ﬁ)}F — UF =EF (4.95)
The exact solution to this equation is not known, but a variation calcula-
tion may be performed using a trial function for the lowest state
F = (a?b[n)2exp {— [a(y? + 2?) 4 bx?]1/2} (4.96)
This form is exact in the limit of a spherical band. The parameters
a and b are to be varied. The variational calculation with this function
has been performed by several authors (Kittel and Mitchell, 1954;
Lampert, 1955; Luttinger and Kohn, 1955). It is found that the ground
state energy is — 0.0090 ev in somewhat better agreement with
experiment.

If one wishes to discuss acceptor states in semiconductors such as
silicon and germanium, a further complication arises because of the
degeneracy of the valence band at k = 0. We turn to a discussion of the
form of effective mass equation near such a degeneracy. Consider the
expansion (4.18) for the perturbed wave function. We shall reserve the
indices ; and ;. to indicate members of the degenerate set of functions,
and denote the remaining functions with the index m. The analysis which
leads to Eq. (4.64) is still valid, except that since there are, by hypothesis,
no momentum matrix elements between members of the degenerate set,

we have (on setting n = /)

h2k?
2m

(E, + — E>A,(k) + %- D Dim Am(k) + Sd‘*k’ Uk — K)A;(k') = 0

(4.97)
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The momentum matrix elements are eliminated to first order in %
by a unitary transformation as in (4.66), (4.73), and (4.75). The elements
of S are given in (4.60) as before. However, the 4, are all of the same
order of magnitude, so it is necessary to retain the terms in (4.75) which
connect them. We have instead of (4.77), a set of equations of the form:

[El + - E} Ci+h 2 [Z ke leM] Cr+ (4.98)

m? wy,

Ed% Uk — K)Cy(k') = 0

There is one such equation for each value of /. If the perturbing potential,
U, were zero, the same determinantal equation would be obtained for
the energies as in Section 1.7. If we introduce rectangular components
of k, &* and %*, and take the zero of energy at the unperturbed value
E,, the equations may be abbreviated as

D [Durap k¥ B — Edys)Cr + Ed% Uk — K)Cy(k') = 0 (4.99)
V,a,B

In (4.99) the coefficient Dy, ,, stands for:

2 a B

Dy op = ;—méu' Oup + B Z 1;:;’2;; (4.100)
and 7, is the ath rectangular component of the vector matrix element
P,,- The quantities D, must be determined from a band calculation
or from experiments such as cyclotron resonance. The transformation
back to ordinary space may now be applied as in Eq. (4.79). A set of
coupled differential equations (as many as there are degenerate functions)
results, which replace the single equation (4.85):

Z |:Du ﬂg(l az)(: aig) + Dv( )(S;l':IFl’(l') = EF;(I‘) (4101)

e

These equations generalize the effective mass theory to degenerate bands.
The leading term in the wave function is, in analogy with (4.89)
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v = D ) Fifr) (4.102)
1

The solution of Eq. (4.101), even by approximate techniques is much
more difficult than in the case of (4.87). Kohn and Schechter (1955)
have applied a variational technique to obtain the ionization energy and
low-lying excited states of acceptors in germanium and silicon. They find,
in the case of germanium, an ionization energy of 0.0089 ev, in fair
agreement with the experimental values which range from 0.0102 to
0.0112 ev depending on the impurity.

For both acceptors and donors, the discrepancies between the effective
mass theory and experiment are principally due to the departure of the
potential near an impurity from the simple form e?/«r previously used.
Obviously, screening of the impurity potential by the dielectric constant
of the host crystal cannot be expected to occur close to the impurity.
The corrections of this sort are of course smaller for excited states of
the excess electron or hole (for p states, the region where the perturbing
potential is strong will be avoided) than for the ground state. Kohn
and Luttinger have been able to determine the corrections to the effective
mass theory for the wave function at a donor impurity, which has been
studied experimentally through observations of hyperfine structure in
spin resonance experiments.

4.4 The Steady Magnetic Field

The subject of the behavior of “Bloch electrons” in external fields,
whether magnetic or electric, is subtle and full of difficulties. The problems
arise from two sources: (1) the expressions for the interaction energy
contain the electron coordinate, so that the periodicity of the Hamiltonian
is lost, and (2) the interaction is not localized. The steady magnetic
field will be discussed first because in this case (as opposed to that of the
electric field), bound state solutions of the free-particle Schrodinger
equation exist.

The Hamiltonian for a single electron in‘the presence of a magnetic
field can be obtained by replacing the momentum operator p wherever it
appears in the Hamiltonian for zero field by P = p - ¢A, where A is the
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vector potential, and by including a term (e¢#/2m)e - B to represent the
energy of the spin. The charge ¢ is taken to be positive in these expressions.
We use mks units in which the vector potential A is related to the flux
density B (in units of webers/m?2) by

B—VFxA (4.108)
He L piearive Po.n 4.104
—%(p eA)? + +2m' (4.104)

The vector potential A is not uniquely determined by the field, since the
gradient of any scalar function of position may be added to A without
changing B. Such a change in A is referred to as a gauge transformation.
A change in phase of the wave function must accompany a gauge transfor-
mation of the vector potential. For a field which does not depend on
position, a possible choice for A is:

A=1Bxr (4.105)

Since weak magnetic fields are of principal interest, one might attempt
to treat the interaction in perturbation theory. This is not possible,
however, for wave functions which are indefinitely extended in space,
as plane waves and Bloch functions are, because the interaction term
can become arbitrarily large. Neither are analogies with classical
mechanics fruitful, since the magnetic susceptibility of a classical system
of free charges enclosed in a container is zero. This follows because the
magnetic field cannot change the energy of a classical particle so that
the partition function (which is a function of the energy) does not depend
on the field. Consequently, the problem must be attacked entirely from
the point of view of quantum mechanics.

What one would like to have is a generalization of the effective mass
equation (4.87) to include a magnetic field. This would enable a reduction
of the actual Schrodinger equation with the Hamiltonian (4.104) to a
free particle equation, which is much easier to solve. In the following,
we will indicate the extent to which such a reduction is possible.

It is usually convenient to express the total magnetic susceptibility
of a material as the sum of three terms:

band band
Xtotal = xép?l'? ) + xgi:xxllla:;netic + Xfi?:fx?;gnetic (4106)
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in which xi:’,?:d’ represents the (paramagnetic) susceptibility of the spins
of the electrons in unfilled bands, Z([i?:rl;i]gnetic is the diamagnetic suscep-
tibility associated with the ‘“‘orbital” motion of the band electrons,
and xggggj;gnm is the contribution from the core electrons in closed shells.
The latter term may be estimated easily; we shall not discuss it here.
For the Hamiltonian (4.104) in which the coefficient of & does not depend
on position, the wave function can be expressed as the product of a space
function and a spin function, and the energy can be represented as the
sum of a contribution from the orbital motion and from the spin, the
latter being just 4 e¢fB/2m. Thus, for the present we may disregard the
interaction of the spin with the field and concentrate attention on the
terms responsible for the orbital diamagnetism.

This treatment will follow the work of Luttinger and Kohn (1955;
Kjeldaas and Kohn, 1957; Kohn, 1959). For an alternative derivation
of a “‘one band‘* Hamiltonian, see Wannier and Fredkin (1962) and Roth
(1962). We wish to look at the Hamiltonian (4.104), with the spin term
omitted, in the representation of Luttinger and Kohn. As a preliminary
to the body of the calculation, it is desirable to obtain the matrix repre-
sentation of the (rectangular) coordinate vector r which enters in the

Hamiltonian through the vector potential:

(nk|r

n' k) = jeﬂk’—m Ty (Ky, )Tt (g, T) d37 (4.107)

=Pk j el =K) ¥ 4 ¥ (K P, (K, T) d3r
— Vi O(K — K)S

It is convenient to introduce the symbol (k|Q|k’) to designate the
matrix elements of an operator Q on a basis of plane waves:

kjQK) = (2;)3 Je"“‘"Qeik"'cFr (4.108)
Then we have for r
(nk|r|n' k') = (K[r|k’)Opn’ (4.109)
Similarly, we obtain for the momentum p:
(nk|p|n' k') = kKb O(K' — k) + pun’ (K" — k) (4.110)

= ann’(k|p kl) + Pun’ 6(k’ - k)
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in which p,,  is defined by (4.21). We can now calculate the matrix
element of P

(nK[P|n’ K') = (k[PK')8y + Pow O(k' — k) (4.111)

since the vector potential depends on coordinates only, and hence is
diagonal in bands in this representation. The singular character of
(k|P|k’) is given through (4.107). We can now determine the matrix
elements of the kinetic energy

2
(nkl‘ P {n k’) = %Zjd‘*k”(nkP|n”k”)(n"k”P

’ k/ . ¢
- n' k) (4.112)

n’

2 ,
= (k‘L'k')‘sW””” (k|
2m

/ Pun’Pu’'n’ /

m k)+%’Ta<k—k>

The potential energy V, which appears in the Hamiltonian (4.91)

is the periodic potential of the crystal, which has no matrix elements

between functions y,(k, r) and y,.(k’, r) unless k — k' is zero or a reciprocal

lattice vector, which can occur only when k and k’ are on the surface
of the Brillouin zone. We will not consider this case.

(nk| V|1’ K) = Vi 8(k’ — K) (4.113)

Hence we find

Pnn’
m

(K| H ' X)) = [(1/2m) (2o + Vo 100K — ) + P27 (W[PK) 4+ (4.114)

(k|P2/2m

k') Oun’

The first two terms on the right-hand side of (4.114) evidently combine to
give the energy in the absence of the magnetic field

1
5= (BB’ + Vin' = EnOuw’ 4.115
Sy P (4.115)
so that (4.101) simplifies to:

(nk|H|n' K') = [E, 8(k' — k) + (k|P2/2m[K')18,un' + Pon’ - (K[P/m|K’)

(4.116)
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We now wish to remove the off-diagonal (in the band index) elements
by the unitary transformation procedure employed in Section 4.3. The
Hamiltonian of 4.116 consists of three parts:

H=H,+H, + H, (4.117a)

where
(1K|Ho|#' ') = Ey Sy 0(k — k) (4.117b)
(nk|H,|n' k') = pun + (k[P /m|K’) (4.117¢)

(nk|Hy|n' ') = (K[P2/2m[k’) 8’ (4.117d)

The transformation for which we are looking must have the form (4.68)
A = ¢S HeiS

in which S, is chosen so as to remove the off-diagonal elements to first
order. S; must then be given through Egs. (4.72) and (4.73)

JOKH K)o g

(K|S, Ry haw,,

n' k') = ~ - (k[P/mlk)  (4.118)

in which Aw,,. = E, — E, as before. If we include terms of second order,
the transformed Hamiltonian is given by an expression similar to (4.74):

H=H0+H2+%[H1,SIH— (4.119)

The matrix elements of the commutator in (4.119) are:

i , 1 1
O0R| Syl ) = 2 (o (KPR -] (w T )

n'n’ Wy''n
(4.120)

The off-diagonal elements are of second order in the cannonical momentum
P. These may be removed by a further unitary transformation with an
Hermitean matrix S,, in which the commutator 4i[H,, S;] is treated in
the same manner previously applied to H;, namely,

1[Hy, Se] = — 31[H,, Sy] (4.121)
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1 1
k/) . pﬂ“n'( + )
W'’y Wy''n’

=0 if n=wn (4.122)

This leads to

nk\S \n’k’ 2m252 ann

A series of successive unitary transformations can be carried out to
eliminate the off-diagonal elements to arbitrary order in P. (Note that
if we wish to go beyond the second order, it is necessary to include higher
order terms from S,, such as [H,, S;], etc.) To obtain the portion of
the effective Hamiltonian matrix which is diagonal in the band index,
including all second order terms, it is necessary to retain only the diagonal
part of (4.120). If we substitute into (4.119), the result is:

(nK[H|n' K') = 8 (k|H,|K')

where

(k|H, k') = E, 8(k — K') + > E, (k| P* P*[K) (4.123)
a8
in which E% is the expansion coefficient for the energy if the energy is

expanded to second order in k (in the absence of a magnetic field), and
P?* etc. is a rectangular component of P

o ] Prstin
En == ﬁéaﬂ + 2 him? Ons (4'124)

To second order in P, this is the desired result: The Hamiltonian in
the presence of the magnetic field is obtained by replacing k in the ex-
pansion of E(k) by P/A.

Kjeldaas and Kohn have evaluated the fourth order term

) E, (k| Ps Pk Py P

K (4.125)

which appears in that case. More complicated quantities are involved in
(4.125) than the coefficients of the fourth order terms in the expansion
of E(k). (The latter only determines certain sums of the E2#.)
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Before the unitary transformation ¢ was applied, the equation

satisfied by the expansion coefficients A4,(k) of the wave function (see
Eq. (4.18)) in the representation of Luttinger and Kohn, was

pX 5 [(nk|H|n' K') — Edp 0K — K') 1A (K') d3%' =0

n

After transformation, the new expansion coefficients C,(k), which are
related to the A by C = ¢7*° A4, satisfy

(E, — E)Co(k) + D E, aﬁj (k| P2 PA[R')Ca(k') d3%' =0 (4.126)
«, B
The transformation back to ordinary space is accomplished through the

function F, (r) defined in (4.79). We multiply (4.126) by ¢ '* and integrate
over k. The crucial term is the following:

ﬂ &% *(k|P* PAK)C,(K') d3k d3k’ (4.127)

1 . .

_ ik-(r—r’) « PB ik’ ¢’/ ’ 3 35’ 434
_—(2@35”3 [Px P ¢k -v'1C,, (k') d3k d3k' dd
= H A(r — 1) [P* PPk’ T']C (k') d3E d%'

— pxp# je“" ¥ C,(K') d3%' = P* PP F(r)

In working through (4.127), we have used: (1) the definition (4.108)
of the matrix element (k|P* P?|k’), (2) the definition (4.80) of the function
4, (3) the function 4 has been treated as a d-function, and finally (4)
the definition (4.79) of F,(r). The quantity P*is a differential operator:

pr=""7 1 oyn

7 0x*

Hence we have in place of (4.113)

(En — E)Fy(t) + ) E,3 P2 PPF,(r) — (4.128)
af
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This is the effective mass equation in ordinary space in the presence
of a magnetic field. If spin is included according to (4.104), the function
F,(r) must be interpreted as a two-component spinor, and we have

(En — E)Fa(t) + JE P= P#F, ()+237? o BF,()=0 (4.129)

m,
af 0

These equations are more complicated than one might at first realize.
The components of the vector P do not commute with each other, so
that one must be very careful to preserve the order. The commutator is

h (0AF d0A> eﬁ
« P8 _ pA pa_ " _ ¥
PiPf— PFPe=C ( o, axﬂ) 2 B ey (4.130)

in which B” is the y (rectangular) component of the magnetic field and
&, 1s the antisymmetric Levi-Civitta symbol (which has the value
+ 1 or — 1 according as the arrangement of numbers yaf is an even or odd
permutation of 1, 2, 3). It is convenient to express the second term in
(4.129) in terms of its symmetric and antisymmetric parts

1
D E,f psph— 1 D' |(Ea# + E,f%)(Px P51 P# P2 4 (4.131)
af of

eh
7 (Ea** — Eqf) Z Eyap BY

b4

The second term on the right-hand side of (4.131) can be expressed as

eh
—M:B .
omg M- (4.132)

where we have defined the vector M, dual to the antisymmetric tensor
whose components are (E¥* — E%), by:

My — "‘0 2 E,28— E e, (4.133)

If we substitute (4.131) and (4.132) into (4.129), we get
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(E, — E)Fa(r) + }Z D (Es* + E,f%)(P* P# 4 P? P)F,(r) + (4.134)

74

ek
2my,

(6 + M) -BF,(r) =0

We can show that M has the effect of changing the effective g-factor
of the electron. This discussion is, however, rather complex, and we
shall postpone it until we have analyzed a simple problem.

It will be shown later that M is zero if spin orbit coupling is neglected.
We shall make this approximation and shall further consider the hypothet-
ical case in which the band is spherical, that is,

1
Ei= b (4.135)

We will put E, = 0, and drop the index ». It is convenient to take the
magnetic field, B, along the z-direction, and to choose a gauge slightly
different from that of (4.105):

A,——By, A,—4,—0 (4.136)
Then
Ko ) ko
PIZ?E—CB}’, Pz”—"‘z—."a—y', P3:7£ (4—137)

With these simplifications, Eq. (4.121) takes the form

B2 [[ @ ieBy\? 02 92
_2;;;[(5_ 5 ) +W+ &E}F(r)zEF(r) (4.138)

This equation is separable in rectangular coordinates. Let us put

F(r) = &%+ 4 g(y) (4.139)
This leads to

d%g  2m* h2k? 1
dyt T |E g e BRe— eBY? g =0 (4140)
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It is convenient to define

hk,
Yo =B (4.141)
Then we can put (4.140) into the form
d%g  2m*
gyr T e e it ey — y)*ly) =0 (4.142)
with
eB B2 kZZ
we=_<, e=E—- 3 (4.143)

Equation (4.142) is the equation for a simple harmonic oscillator
of frequency w,, with the equilibrium point located at y,. The eigenvalue,
g, 1s given by

&= (I + Hhw, (4.144)

where [ is any positive integer, including zero. The quantity w, is usually
called the cyclotron frequency. The energy in the field, neglecting spin,
is given by

h2k,2

E—_- "
2m*

+ (I + Y. (4.145)

The result (4.145) is quite remarkable. The continuous, three-
dimensional parabolic band structure from which we started has been
split up into a series of lines (the oscillator levels), which we can associate
with the classical circular motion of the electron in a plane perpendicular
to the magnetic field, plus a one-dimensional parabolic term coming
from the free electron behavior in a direction parallel to the field. The
discrete levels are known as Landau levels (Landau, 1930). The energy
of the lowest state is no longer zero, but has been raised to }kw,.

The Landau levels are highly degenerate. To estimate the degeneracy,
let the system be contained in a large rectangular box with sides of
length L, L , and L,. The number of possible values of &, (where ¢ = x, v,
or z) in a small interval, 4%, is L; A4k;/2x. All values for 4, are permissible
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provided that the “orbit center” y, lies within the box: — L /2 < y, < L,.
Here we neglect the extent of the ‘“orbit” relative to the size of
the container. From this we can determine the range of allowed values
for %,

—eBL, eBL,
o5 <k < 5% (4.146)
The number of levels in a single Landau level is then
L, Ak,2n = eBL,L,2nk (4.147)

If we next consider an interval 4%, in k,, the number of levels in a Landau
level and A4k, is

eBV
—— Ak, 4.14
4n%kh (4.148)
in which V is the volume of the box. We note that the degeneracy is
proportional to B.

The function g(y), which is a solution of (4.142), is an harmonic
oscillator function:

9102 1/2
8ily) = (9”2;) Hila(y — yo)lexp [— botly — y0)?]  (4.149)

in which a? = m* w [k = ¢B|h, H, is a Hermite polynomial, and / is the
oscillator quantum number which appeared in (4.145). We can obtain
a measure of the radius of the orbit by computing the root mean square
value of y. After a simple calculation, we get

Yrms = [{(y — yo))]V2 = (L + §)' Pl = (R[eB)'* (1 + H1*  (4.150)

In a magnetic field of 1 weber/m? (10% gauss), we find y,__ is about 180 A
for the lowest state. This is certainly small enough to justify our neglect
of the “orbit radius” compared to L, in calculating the density of states;
it is also large enough to justify replacement of A(r — r') by é(r — r’) in

(4.127).
The Landau levels are separated by an energy
keB (B)

—=1.1 104
- 577 x ev (m* )
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where B is in webers/m?2, and m is the free electron mass. For low fields,
and materials with effective mass ratios of the order of unity, this energy
is small compared to thermal energies except at the very lowest
temperatures: the quantization of levels can usually be ignored. How-
ever, if we consider materials with effective mass ratios of the order
of 10~2, in strong fields, the splitting of the Landau levels can become
quite significant.

We now return to discussion of the vector M whose rectangular
components were defined in (4.133). From (4.124), we see that

. " (Brs Don — Dns Do)
Ef — Efe— > o (4.152)

Since p is an Hermitean operator, pJ = (p3,)*. Since the time reversal
operator, which changes k into — k is equivalent to complex conjugation
for wave functions which do not include spin, we may always choose the
wave function #,(0, r) to be real. Then the matrix element p,; will be
purely imaginary, and (4.139), and consequently M, must vanish. This
argument holds, however, only if spin orbit coupling is neglected.

Let the portion of the Hamiltonian due to spin orbit coupling be

I3

Hso -
4m?2 c?

o-(VV xp)=e-h
Relativistic effects other than spin orbit coupling are neglected. In the
presence of a magnetic field, we replace p by p + €A as before

h
Hyo= 5 (o 7V X (p + cA)} (4.153)

If this term is added to the Hamiltonian of (4.104), one can easily show
that the formal theory remains unchanged except that the matrix elements
P, must be replaced by

= Su: (p + 4% G X VV) usd3r (4.154)

The contribution of the ¢ X V'V term to I, is usually negligible. Of more
significance for the present problem is the modification of the wave
function at & = 0, #,, by the spin orbit coupling. We will take this into
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account through first order perturbation theory. Let , be the unper-
turbed wave function. Then we have

Uy = 1,0 + 6+ Z

4.155
ﬁw —u (4.155)

in which
3
h,, = 27° E un @ o, © a3y (4.156)
2

If we substitute (4.155) into the definition of the matrix element

3
Prs = (2{7;3 gu: pus d%r

the vector M can be calculated to first order in the spin orbit coupling.
M is found to be proportional to the spin operator ¢.

M,=c-G, (4.157)

in which G, is a second rank tensor. An expression for &, may be deduced
from the work of Roth (1960). We will not discuss the details here.
We put

=(1+6,) (4.158)

Lo|0°

in which 1 is the unit dyadic. Then we may write the basic equation
(4.134) as

(En— E)Fy + } D) (Es# + E,f*)(P* PP 4 P P3)F, + (4.159)
af
eh
M G 8y BF” =0

For the case of the parabolic band previously considered, the energy
levels for a magnetic field in the z-direction are

_hzk
T 2m

+ (I + Db, + gBms (4.160)

where m is the spin quantum number: m = + }.
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The components of g are sensitive to the details of the band structure
due to the presence of energy denominators in (4.152) and (4.155). In
materials such as InSb where there are large spin orbit splittings and
small band gaps, the effective g factor may be very large (— 50 has
been reported in this case).

The theory of the g-factor of electrons in the alkali metals has been
discussed by Yafet (1952, 1957). Studies concerning semiconductors
have been reported by Luttinger (1956), Roth, Lax, and Zwerdling
(1959), Roth (1960), and Liu (1961, 1962). Cohen and Blount (1960)
have discussed the g-factor of electrons in bismuth.

Up to the present, we have tacitly assumed that we are concerned
with a band whose maximum or minimum is located at k = 0. In the case
that the band extremum is not located at k = 0, but at some point k;, the
prescription of the effective mass theory is simple: We merely expand
the energy in powers of 6k =k — k;,, and then replace d8%* by
(1/2)(8/ox,) + (e/B)A*. In the case of a band degeneracy, the theory
proceeds in analogy to the case of the impurity level. In place of (4.128),
we get instead

v 1 o eA*\ (1 @ eA*r
1'2;; Dy op (7axa + T) (7 FP + T)Fll(r) = (E—E)Fi(r)

(4.161)

Computations with this equation for practical cases of degenerate valence
bands, as in germanium and silicon, are quite difficult (see Goodman,
1961; Evtuhov, 1962) and will not be considered here.

4.5 The Magnetic Susceptibility of Free Electrons

In this section, we shall calculate the magnetic susceptibility of a
system of free electrons (with effective mass m*) at low temperatures.
This is particularly important in the discussion of the de Haas-van Alphen
effect, which furnishes one of the most important techniques for the
experimental investigation of Fermi surfaces. We will follow, to a large
extent, the treatment of Sondheimer and Wilson (1951; Wilson, 1953).

In classical mechanics, it can be shown quite generally that the
magnetic susceptibility of a system of charges is zero (the Bohr-van
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Leeuwen theorem). It can be easily seen that this must be correct, since
the energy of a particle is, in classical theory, unaffected by a magnetic
field. Hence the free energy is also independent of the field, and the
susceptibility is zero. In quantum theory the energies are, however,
changed by application of the field, and it is possible to calculate a nonzero
susceptibility.

The calculation begins with determination of the free energy, which
is given for the case of Fermi statistics by the expression (Wilson, 1953)

F=U—ST=Nu—kT D In(l 4 "™ B (4.162)

3

The dependence on the magnetic field is contained implicitly through E,
(which is given in 4.160). The quantity u is the chemical potential (or
Fermi energy); it is determined from the requirement that N, the number
of electrons, be given by

N=Dn (4.163)

This condition is evidently equivalent to:

oF

“_o (4.164)
op
The magnetization, M, is given by
1 oF oF
- - = 4.1
o OH oB (4.165a)

in which g, is the permeability of free space; and the magnetic suscept-
ibility, y, is defined by

y=M|H (4.165b)

The calculation proceeds by relating the free energy to the “classical”
partition function

zpy = e (4.166)
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(where f = 1/kT). We define an auxiliary function g(E) by
g(E) = In (1 + el#— EMRT) (4.167)

It is convenient to introduce functions z(E) and @(8) through

=<}

Z/(f:) = EZ(E) e~ PEdE (4.168a)
0

P(8) = Eg(E) e~ PEdE (4.168Db)
]

According to the theory of the Laplace transform, we have

1 Z(s)
—_ Es
2(E) = i S " 3 ds (4.169a)
c+10
1
e Es
§E) =4 E @(s) e ds (4.169b)

The contour of integration is parallel to the imaginary axis. The constant ¢
must be chosen so that all of the singularities of the integrand are on the
left, but is otherwise arbitrary.

F = Nu—kT D ¢(E) (4.170)
1
c+1i00
. kT Ejs
_Nu-——én7 S Ze @(s) ds

c+100

= Nu rT E 2(=s) s2g(s)ds

271 s?
c— 1
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Since s2 ¢(s) is the Laplace transform of 92¢/dE?, the final integral can
be expressed as:

[so]

2
F=N,u—kT§z(E)£dE

oE?2
0
Now
0% 1 of
dE2~  RT oE

where f(E) is the Fermi function,

HE) = [e®E—miT 4 1]-1
)

o0

ro fa L

0

af
i ——dE (4.171)

At low temperatures df/dE is almost a delta function, so that the
essential part of the problem is just the calculation of the inverse Laplace
transform of Z(8)/82

Now we determine Z(f) from (4.166). The energies E, are given by

h2 k2 ghwo

El: om +(l+2) c:l:

(4.172)

in which wy, = eB/m, is the cyclotron resonance frequency for free
electrons, whereas w, contains the effective mass m*. The (1) sign results
from the differing directions of spin. We use the result of (4.148) to give
the number of states in an interval A%, Then

BV - o
)= tth 2 3o °e“’m'“§dk exp( ok ) (2.173)

spin 1=0

eBV [ m* \'? cosh ghw,/4
T 27k

207 sinh hiwe/2
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This result is to be substituted into (4.169)

¢+ 10
1 Z(B) m* \** 1 ¢E8 cosh ghaw,/4
— = N eEB L = RS — _— Y
A(E) 2ni§e gz W =ho-Vigns) 2u | b phagz P
cC—10
(4.174)

The integrand has poles on the imaginary axis at points fkw /2 = nni
(n 1s any integer, positive or negative, but not zero), and a branch point
at the origin. It is convenient to change the path of integration into the

V

N~—~——_

Fig. 20. Contour of integration for Eq. (4.174).

contour shown in Fig. 20. Since the contribution from the large arcs tends
to zero as they are indefinitely enlarged, we need to consider only the
contributions from the residues and from the paths parallel to the negative
real axis. The contribution from a single residue is

8/2 i(@nnElho, — n/4)
(— 1) *+12m hoe ) e ° cos nagm*
2 (n7)5/? 2my

The sum of the residues is evidently

(Bw ' . {— 1)” cos (2nnE [hw. — 7/4) nmgm*
—2m( 3 ) 2- Z ()P cos 2my

) (4.175)

n=1
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It is this oscillatory part of z(E), coming from the poles of the integrand,
which produces the oscillatory behavior of the magnetic susceptibility
observed in the de Haas-van Alphen effect.

To obtain the integral along that part of the contour parallel to
the negative real axis in the limit that the radius of the small circle tends
to zero (contour C,;), we observe first that, for small x,

cschx-—l— l—x—z—{—E-{—
T x 6 360

so that we get a contribution (with z = fhw,/2)

1 [k, \* - 1 1 [m*2g2 1 .
c 2Elho, |~ L mmegs 1 @
271 ( 2 ) ¢ 22 + P2\ 8my? 6 + 0(z'?) |dz  (4.176)

1

The integrals in (4.176) may be evaluated through the use of the identity
(Jeffreys and Jeffreys, 1950, p. 401) that

tm—l

I(m)

1
—m pat —
i jz etdz =

Cy

Then (4.176) becomes

2FE52 8 hwe2EV2 [m¥2g2 1
+ (4.177)

I‘zwc.15]/5+7 V= a

8my2 6
Higher terms in the series can be neglected, provided (as we shall be
able to infer subsequently) x> hw,. (These terms give rise to a field
dependence of the normal diamagnetism and paramagnetism.) If we now
combine the terms (4.175) and (4.177), we find for z(E)

m* \32[16E52  (hwo)2EV2 (m*2g? 1
z(E) = V(thz) [15 V; — VY_Z ( Bmgt g)+ e (4.178)

(g 2“; (— 1" cos (2anEfhw. — 4) (nngm*)]

21/2 (na)>2 2m,

n=1

The free energy is now to be determined from (4.171). At low
temperatures (kT < u) we may, with respect to the first two terms,
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replace df/dE by — 6(E — p) (we thereby ignore a weak quadratic
temperature dependence). The oscillatory term must be handled with
greater care. We can write

i 1 1
dE ~ kT 4cosh?[(E — pu)/2kT]

Then we consider the integral

~ 4kT ) cosh? [(E — u)[2kT]

0 —

o) o]
1 | cos 2nnE/hw, —n[4)dE } Re ¢@muihee = i4) 2m"”y/hw
cosh?(y

(4.179)

where we have defined y = (E — u)/kT, and extended the lower limit
of the integration on y from — u/kT to — co. The error in this replacement
is of order e~ #*T which is negligible. The integral is a tabulated one
(see Erdelyi, 1954, p. 31), and gives

_ 2n2nkT cos 2anulhw, — w/4)
hw, sinh 2721k T [hw.)

Then the free energy per unit volume becomes [from (4.171)]

16,u5/2 3/2 15 (R \2 fm*2g2 1
Pt ) |1 (5 o) e
O
15 (kT kwc o/2 2(— 1)* cos 2nnu/hw. — 7/4) cos (nagm* [2m,)
8(212) \ha, = n3/2 sinh (2722 nkT [hw,)

The magnetization is found by differentiating (4.180) as required by
(4.165). Observe that

aF_ e oF
BB_m*aTuc

In differentiating the oscillatory part of the free energy we neglect the
contributions from all except the cosine term: this will be dominant
under the conditions of interest. Then
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_ 3m*2 g2 6k T (2u\"®
M=M, [(W — 1) ~ (hwc) X (4.181)

2 (— 1) sin (2anu/fico, — 7[4) cos (nmgm*[2my)

nli? sinh (272 nk T [hw,)

in which

e (m*u V2 ez (2u\"*

- = |== 4.1
0 67:271( 2 ) D= 2nih\me) P (4.182)

The susceptibility is immediately found from (4.165b). The leading term
is the paramagnetic susceptibility due to the electron spins; the second
term is the steady diamagnetic term which is one third as large when the
effective mass ratio is unity and g = 2: these terms are independent of
temperature. The oscillatory term is significant at low temperatures
and high fields: it produces the de Haas-van Alphen effect.

The chemical potential, u, in the presence of the field must now
be determined from (4.164) and (4.180). We find

1 [2m* M)3/2 3 [Fwe\? [(m*2 g2 1

N _W(—hz =6\ ) \emgr 8/ (4.183)
3nkT (ke 2(4)" sin (27nu/kio, — 7/4) cos (nmgm*[2my)
Rwe \ 2u = nli2 sinh (272 nkT /kw.)

It is necessary to solve (4.183) to determine y in terms of N. It is usually
sufficient, however, to include only the first term; the relation is then
evidently the same as for the free electron gas. In this case, we may set
u = k? kp%[2m*, in which kg is the wave vector on the Fermi surface. Then
we obtain for M, in (4.182)

g2 kF
12702 m*

M, = (4.184)

It is interesting to consider the physical origin of the diamagnetic
effects. The application of the external field causes the band structure
to break up (for directions of k perpendicular to the field) into a set of
Landau levels. For fields which are not too strong, the Fermi level can
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be regarded as constant. The lowest level now has energy w2, instead
of zero, and the average energy is increased by the field. Hence there
is a steady diamagnetic contribution, which will dominate the spin
paramagnetism if the effective mass is small. As the field increases, the
spacing between the Landau levels increases so that the levels are grad-
ually ““forced through” the Fermi level and depopulated. (At the same
time the degeneracy of the Landau levels increases.) The average energy
of the system fluctuates as this “forcing through” occurs. The amplitude
of the oscillations increases with increasing field, and the period is pro-
portional to B~l. The amplitude is a rapidly decreasing function of
kT|kw,, which implies that observation of the oscillations requires low
temperatures.

The extension of these results to the case of an anisctropic effective
mass is straightforward (Blackman, 1938); but for arbitrary nonpara-
bolic band structures, the problem is much more difficult (Lifshitz and
Kosevich, 1956). The period of oscillations will be determined by the
semiclassical arguments of Onsager (1952) in the next section.

4.6 The Cyclotron Frequency for an Arbitrary Fermi Surface

A rigorous determination of the energy levels of an electron in a
magnetic field for a situation in which the band structure in the absence
of a field is some arbitrary E(k) can be based, in principle, on the one-band
Hamiltonians of Kohn and Wannier (see Section 4.4). Such a treatment
is generally impractical and it is customary to refer to a semiclassical
approach (Onsager, 1952; Lifshitz and Kosevich, 1956) For the gauge
of Eq. (4.136), the commutation rule for the components of the quantity
P = (Bi) V+ eA, which is given in (4.130), is

3
[Ps Py = "B (4.185)
[Py.Pz]= [Pxxpz]:o
We wish to draw an analogy between the first of equations (4.185), and
the ordinary cannonical commutation rule between coordinates and
momenta

5
[Pr.gi] = — O (4.186)
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by making the identification
p.= P g.= P,/eB (4.187)
We apply the semiclassical quantum condition

1

— P,dg, = k 4.188

o 7:= (n+7) (4.188)
in which # is a positive integer and y is some constant ‘“phase factor”
(y = % for free electrons). We substitute (4.187), and find

96 P,dP, = 2n(n + y)heB = A (4.189)

The integral in (4.189) runs along the curve bounding a cross section of
a surface of constant energy perpendicular to the field, and has a value
equal to the area, A4, of this cross section.® The area of the cross section
depends on the energy of the state whose quantum number is n. We will
suppose that in the limit of large energies, the separation between states
is fw, (this is the definition of the cyclotron frequency)

dE

= = b (4.190)

Differentiation of Eq. (4.189) with respect to energy yields:

daA\"!
w. = 2neB (2?) (4.191)

We can easily see that w, is the circular frequency of rotation of a
classical orbit on a cross section, perpendicular to the magnetic field,
of a surface of constant energy (Pippard, 1960). The Lorentz force on
a particle in a field is evB so that the time required for the momentum
to change by dp is dp/evB. The time required to complete a revolution
is then

5 The area mentioned above is in “momentum” space. To go to the ordinary
reciprocal lattice, a scale factor of k2 is required: A’ (area in k-space) = A/h?
= 2a(n + y)eB/h.
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1 ap
T=——
eB v

(4.192)

Now consider similar cross sections of surfaces of constant energy E
and E + dE. The separation between the surfaces is dE/V, E = dE|v.
The area of the annular ring between the surfaces is

dA = dE 96 i (4.193)

14

where dp is a momentum increment along the ring. Evidently

-1
= ;%% , and w,= gg = 2neB (%) (4.194)
as required.

Further, we can infer very simply the existence of oscillations in
the magnetic susceptibility. Since hw fu is quite small in usual circum-
stances, the Fermi energy will be essentially independent of the field.
Consider a particular level of oscillator quantum number #. For small
fields, the orbits of this # are small, lying well inside the Fermi surface.
We consider a cross section of a surface of constant energy E, corresponding
to #, of thickness dk, and area A. As the field increases, the area of
the cross section grows according to (4.191). When it equals the area
of the corresponding cross section of the Fermi surface A4,, the oscillator
level will be half depopulated. This occurs when

Ao(p)

2nln+ ) = 23 (4.195)

The magnetization will vary with the state of depletion of the level with
energy nearest the Fermi energy. A periodic dependence of magnetization
on field is to be expected as successive levels come up to the Fermi surface
and depopulate. Thus we expect that the susceptibility contains (at
least, as lowest harmonic) a term proportional to

Ao(Pz)
heB

(4.196)

So far, we have considered a particular cross section corresponding to
a definite value of p,. The contribution of all cross sections must be
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summed. Since the sine is a rapidly oscillating function (usually,
%eB < A,), the contributions from different cross sections will tend to
cancel. The resultant will be governed by the region of Fermi surface
for which the area is an extremum with respect to p,: in examining
experimental susceptibility measurements, we find a periodic behavior as
given by (4.196), with 4, an extremal cross section.

©_© O _ ,°

- s N /

S 7

Fi1c. 21. Section .of Fermi surface in the extended zone scheme. The magnetic

field is tilted slightly with respect to the crystal axes. Regions of electron orbits

(upper left) are separated from regions of hole orbit (bottom right) by an open orbit O, O”
(Chambers, 1960).

Note that these results give the correct behavior for the free electron
gas. In that case, 4y = 7p;® = 2wm*u, so we get

Ao _ 2
BeB ko,

(4.197)

as required.
In summary, the fundamental period of de Haas-van Alphen os-
cillations of the magnetic susceptibility is 4y/heB, where A4, is the area
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of an extremal cross section of the Fermi surface perpendicular to the
field.

It is possible, however, that the intersection of the Fermi surface
with a plane may not be a closed curve, if the Fermi surface touches
the Brillouin zone. The situation may be most easily visualized in the
extended zone scheme (see Fig. 21). Such intersections are referred
to as “‘open orbits,” and are particularly important in the determination
of the magnetoresistance.

Finally, we note that in sufficiently high magnetic fields, the field
itself is predominant in determining the motion of an electron. The
lattice potential then is only a small perturbation, which tends to remove
the degeneracy of the Landau levels and therefore broadens them. When
this situation occurs, electron orbits may pass through Brillouin zone
boundaries where energy gaps would normally be present. This effect
was named magnetic breakdown by Cohen and Falicov (1961), and has
been studied by Blount (1962b) and Pippard (1962) as well. It can be
shown that magnetic breakdown is possible if Zw, Ep> E,2 where E,
is the gap across a zone face.

4.7 The Steady Diamagnetic Susceptibility: Arbitrary Band
Structure

Section 4.5 contained a ‘“‘quasi-exact” derivation of the magnetic
susceptibility of free electrons, which was seen to contain a steady
susceptibility, and a term involving a superposition of oscillatory
components. The diamagnetic part, z4 of the steady susceptibility is

, 2
Tas= — % - — % (4.198)
in which y, is here the permeability of free space (47 X 107 in mks
units). The generalization of the oscillatory term to arbitrary band
structures was considered in Section 4.6. We now wish to outline the
corresponding generalization of (4.198).

The calculation of the diamagnetic susceptibility for an arbitrary
band structure was first carried through to a complete, although formal,
expression by Hebborn and Sondheimer (1960). Earlier studies were
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made by Peierls (1933a,b), Wilson (1953), Adams (1953), and Kjeldaas
and Kohn (1956). Alternative approaches have been given by Enz (1960),
Roth (1962), and Blount (1962b). The calculation is quite laborious,
and we shall necessarily omit many of the details.

As before, we begin by considering the classical partition function,
which is given by (4.166). Unfortunately, we do not have an explicit
formula for the energy levels in the presence of a field, and so cannot
carry out an explicit summation to produce an expression analogous to
(4.173). Instead, we expand the partition function in powers of B, and
retain terms of the order of B% The radius of convergence of such an
expansion will be governed by the location of the first pole. Thus the
expansion technique can yield only the steady diamagnetism.

The partition function may be generally defined through
Z = Tr{e~FH} (4.199)

in which H is the complete Hamiltonian for the system. This will easily
be seen to reduce to (4.166) when the trace is evaluated in a coordinate
system in which the basic vectors are eigenvectors of H. In the present
case, it is convenient to express the Hamiltonian, using the gauge of
(4.136) as

H=H,+ H, + H, (4.200)
in which
Hy= % + V() (4.201a)
H, = ’han Y a_ax = ik, y % (4.201b)
H, = 6;52 y? (4.201¢)

We will evaluate the trace in a representation in which H, is diagonal.
The basic functions are the Bloch functions of (4.2) and (4.3).

It is necessary to be very careful in expanding the operator e~ #¥,
since H,, does not commute with H, and H,. To understand the technique
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let us consider, following Goldberger and Adams (1952), an exponential
of the form e~ “*? where a and b are any two noncommuting operators:
Define

u(s) = e~ (atbls (4.202)

Then wu(s) satisfies the differential equation

ou(s)
ds

= —(a+bu(s); u0)=1 (4.203)
Now define an operator v(s) through

u(s) = e~ * v(s) (4.204)
We find that

d
W) s pemwafs): 0(0) =1 (4.205)
ds
It is desirable to replace the differential equation and boundary condition
by an integral equation: This is seen to be:

s

v(s) =1 — Sds’ €%’ be~ %" y(s’) (4.206)

0

This equation may be solved by iteration. Successive terms involve
increasing powers of b. The iterative procedure may thus be seen to be
useful in the case in which & is in some sense a ‘‘small” operator compared
to a. The iterative solution of (4.206) which includes terms of second
order in b is

S s N
v(s) =1— Eds’ e be= % 4 Sds’ S ds" e be=als' =" pe—a"  (4.207)
9 o b

We can now obtain the desired expansion for #(s). The expression is
rendered a bit more convenient by the introduction of variables s;, s,
through s’ = ss;, s” = s’s,. We wish to obtain (1)
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1

u(l) = ¢~ @+ = ¢g—2 Edsl e~ (l—sdapp—sa | (4.208)
0
1

1
Ssl ds; S dsge1—sape=sll=sdap g
0 0

The general term in the expansion (4.208) may be written down
and expressed in a reasonably simple form using the so-called “ordered
product.” We shall not, however, discuss the general properties of the
expansion. The terms presented explicitly in (4.208) suffice for the
present problem.

It can be seen on general grounds that the term in the trace which
is linear in B, resulting from the application of the linear term of (4.202)
to H,, must vanish. Such a term would yield a contribution to the magne-
tization independent of the applied field. The second order terms are of
two kinds: (1) a term resulting from use of H, in the linear term of
(4.208), and (2) the quadratic term in (4.208) in which & = fH;. Hence,
we write

Z=2Zy+2Zy+Zy (4.209)

in which Z; is the partition function in the absence of the field. Our
definition of the trace is (for an arbitrary operator A)

Tr(4) = ) E sk Sd:’rl//,,*(k, r) Ak, )

Thus

1

Zy=—p8 jdak 5d3r Eds%*(k, 1) o= (L= 1BH [, o= 50Hh o)y (K 1) (4.210)
n L6
Z,, results from the linear term H, in second order:
1 1
Zy=p D) Ed%jd% 5 s, ds; jd% Yu*(K, 1) e~ (1= s0BH | x (4.211)
" 0 0
e sl —sIBHe H, g—sisaBHo ofy (K, T)
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These expressions may be reduced to the following:

1

Zy=8 Sdf‘k S ds ™ 7 VE (k| H, k) ¢ PEAN (4.2122)
” 0

1 1
Zy=p D) jd% 5 a3k’ Ssl dsgdsz o TE (R |H W K'Y X (4.212D)
0 0

nn’
P si{l — s,)BE,,’ <'}’L’ G |H1‘”k> P 515,8E ,(K)

In the expression for Z;;, we have used the completeness relation

P S Bkif* (K, T)fu(k, T) = O(r — 1) (4.213)
The matrix elements of H, and H, are singular functions of k (see 4.107).
For this reason the exponentials of the energy are left on the right of the
matrix elements.

The explicit evaluation of the formulas for Z;; and Z, is quite
complicated and will not be discussed here (see Hebborn and Sondheimer,
1960, for details). The free energy is computed from the partition function
with the use of (4.169) and (4.171). This proceeds rather simply: Evaluation
of Z, and Z, leads to expressions which depend on 8 through terms of the
form Be~#E» and B2 ¢~ #E». We may write schematically

Z=2,+ B jdl*’k [an(K)B e "En 1 b, (K)B2 &~ PEn) (4.214)

in which a,(k) and b,(k) are complicated functions involving derivatives
of the energy and the wave functions with respect to k. Let us consider
the integrals over f and E involved in the computation of the free energy.
We find that

] c+i00

4 - —bE,- g5 @
2%”' S i~ j ﬁ_f[“”(k)ﬂe PEn 4 ba(k)B2 e "B eﬁE%dE (4.215)
0 c—iw
@ 0+.ioo
: af — BE, — E)
:27:75” ! dﬂ[— an(K)/(E) + ba(K) 7| €

0 c—1©
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:EdEé(En—E) [—an( J(E) + ba(k );é

= — G WE) + ba(K) (1)

In the first step in (4.208), we have integrated by parts with respect to E
in the first term; and in the second step have used:

: AEn—E) ¢
_— dﬂeﬂ(En_E) j “’(En_E)dxza(En_E)
Thus, the contribution to the susceptibility from these terms is just
3 af
2%2 @% | — an(0)/(En) + balk) 7 (4.216)
The calculation of Hebborn and Sondheimer yields the following very

complex expression:

X=X1+ X+ 2+ 1

e? u, 0%E, 92E,, %E, \?
X177 483 12 Z Haklz oky®  \ 0k, ok, + (4.217)

3 (e P 2 N HE
Ok, ok, 0ky® | 0k, 0k,2 0ky)| OE,
_ 62#0 "y aE" au’n 2 .
2= 4m3m Hﬁ o | )| am, o 1Xml - (4.218)

ou,* ou, 0u,, OU,*
N W e
15( ok, ok, | ok, ok, )d’°+2X""W *

; ou,* 0%, ou, 9%u,* 0E, 0ofy(En) B
ok, 0xdk, 0k, 0xok, ok, OE,
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€2 uy v\ |im ou,* ou,  Oun ou,*
= — — X || — d 4.21
=T dnim HhZ K ok, ok, ok, ok, )0 T (4219
”n

X, J ou; ou,* aul ou,
2 o am RideChdetid
2 E, — E, 1S(ay ok, " ox oky)

l#n

m OF, oFE,
kl Ynl - kz an + ﬁ a—kl Ynl}] Tkz f(](E")dsk
__ P [ ] 2 2
Xa 473 m 1 ok,

202 1
il - o

X 0
ok,

dv, + 2W, — (4.220)

du* du, | |
| Yo _S P

m = ox 0Ok,
h? Ofo(En) | 1
e g~ | 4%
In these equations, the quantities X,,, Y,,, W, are defined as follows$:
. ou; . ouy
Xn,:zgun*akldro Y,,;zzgun*akzdro

1 ou,* ou ou, ou,*
W=y Yy — — | [ 22 ¥n n Otn”
L 25( ox ok, | ox ok, )‘h”

The integrals with respect to 7, extend over the unit (Wigner-Seitz) cell.
The magnetic field is, of course, along the z-direction.

In the free electron limit, «, is a constant so that only the first term
survives. If one makes use of the delta function character of af,/3E,
it is found that Eq. (4.198) is obtained, as required. The tight binding
limit of very narrow energy bands is also of interest: then the derivatives
of the energy with respect to the components of & vanish exponentially.
Only y, survives in this limit, and Hebborn and Sondheimer show that

6 The normalization of the Bloch functions employed by Hebborn and Sondheimer
in Eqgs. (4.217-4.220) is different from the convention of Eq. (4.4). They choose

Q e }
ags | PR Ol £) 4 = 8 (K — K)
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the standard result is obtained for the atomic diamagnetism. Finally,
it has been shown that the expressions possess the necessary invariance
and symmetry properties. These complex formulas have not yet been
evaluated for a real material.

4.8 The Steady Electric Field

The study of the motion of electrons in a steady electric field has
turned out, perhaps rather surprisingly, to be quite complicated. The
field contributes to the Hamiltonian a term

U=e¢é&-r (4.221)

where & is the electric field strength. As in the previous sections, the
charge ¢ is taken as a positive number for electrons. It is evident in

v

|
|
a) :
I
|
|

Fic. 22. Effect on an electric field on a square well in one dimension.

this case, as in the discussion of the steady magnetic field, that there will
be difficulties associated with the application of perturbation theory
because, for sufficiently large distances, the perturbation becomes ar-
bitrarily large, no matter how weak is the field. Straightforward appli-
cation of perturbation theory is not possible, and important physical
quantities may not possess a power series in the field strength. There
is, in addition, another complication not present in the discussion of
the magnetic field. Strictly speaking, there are no bound states when
the Hamiltonian contains a term of the form of (4.221). To see this
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consider the potential energy diagrams of Fig. 22, which show the effect
of an electric field on a square well potential in one dimension. It is
seen that for any energy E which, in the absence of the field, produces
a bound state in the well, there will be no bound state when the field is
present because the electron has a finite probability of tunneling out to
the right. On the right in Fig. 22b, the wave function will be (in the WKB
approximation)

A
(E —e& 2k P [t (2m)1/2 {3% (E—e& x)3/2H (4.222)

This is not normalizable. The transmission coefficient through the barrier,
which is the ratio of the square magnitude of the function outside the

well to that in the well, is, in the WKB approximation, approximately
(Bohm, 1951)

exp (_ 2 (ompe ﬂ) (4.223)
One notices that this expression, although very small for small &, does
not possess a power series expansion in &. Of course in very many practical
situations, the applied field is sufficiently weak so that the life time
of a bound state is very long indeed. Tunneling is, however, essential in
explaining the phenomena of cold field emission from solids.

We will base our study of a Bloch electron in an electric field on
the time dependent Schrédinger equation. Because an electron may move
through a large region of k-space under the influence of the field, it is
desirable to employ the crystal momentum representation (4.6). We
suppose that the electric field is in the x-direction, and that this is also
the direction of a reciprocal lattice vector.

It is necessary to determine the matrix elements of the coordinate
x in the crystal momentum representation

(n' K'|x|nk) = S ek =K T o4 ¥ (k' 1) xuuy (K, T) d37

_1 [% S ek =X T 3 5k’ F)u,(k, v) d3r —

1

5 KT L, 1) () A
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The quantity u,.(8/0k,)u, is a periodic function, so that we obtain
0
(nklxjn' K') =i % [6(k — K')Oun] + Xpu 6(k — k') (4.224)
where

_ o0
Xy = 2, zju,, (k, 1)

d

, 3
oh. un(k, T) d3 (4.225)
and the integral in (4.225) includes a single cell. The calculation of the
matrix element has been handled in a fashion which apparently ignores

vital questions of convergence: this problem has been discussed carefully
by Blount (1962a).

The Schrédinger equation now has the form

E,(k) + ms’% - m% Pa(K) + €& D) X () (k) = 0 (4.226)

An important general result can be obtained immediately. If we
multiply (4.226) by ¢,*(k), subtract from the resulting equation its
complex conjugate, and then sum on the band index #, the term involving
the X,, disappears on summation. This follows because X, = X,
We then obtain

0 Fl
Y N o 2_
[ o5 Th at] 2 a2 =0 (4.227)
The general solution of this equation is

&t
2 @2 =6 (kx + ET v k,) (4.228)

where G is an arbitrary function of its argument. This result implies
that the centroid of the electron wave packet moves through k-space in
accord with the relation

dk, el
i (4.229)
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This is just what would be expected in classical mechanics for a particle
of charge ¢ and momentum 7#k.

We now examine Eq. (4.229) in more detail. The diagonal matrix
element X, will not vanish at a general point of the Brillouin zone,
nor need it vanish at symmetry points unless the group of the wave
vector contains the inversion. This matrix element gives rise to a dis-
placement of the band structure which is linear in the applied field. We
can incorporate this shift into the first term of (4.226) by defining:

E,V(k) = E,(k) + e€X,, (4.230)
Then (4.226) becomes
' ? ?
E () + ie o — ih—| gu(k) + & D X (k) =0 (4.231)
n#n’

The motion of an electron in a given band is described by the terms
in the square bracket; the off-diagonal elements produce transitions
between bands. These transitions comprise the phenomena of tunneling.
We will neglect the interband terms for the present, and consider the
resulting, reduced equation for functions we now call @Y.

0
ok,

. ., 0

E, (k) + ie& — ﬂia—t @,(k) =0 (4.232)
An acceleration theorem may be deduced from this equation. The

group velocity associated with a wave packet composed of states belonging

to a single band centered around some particular k is

V= % Vi En(k) (4.233)

When an electric field is applied, states of different k are mixed according
to (4.5), and the velocity of the wave packet is altered. We define an
““acceleration” by

% (V) = % % 5 @n* (k) Vi En(K) (k) d3% (4.234)
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The expression for the ‘“‘acceleration” may be reduced to an interesting
form through the use of (4.232)

d, 1 ([op* 0] 25
E(V,,)—%g[ Vv E, <Pn+¢n Vi E, at]dk

1 e Op,* * aqo,, 3
—%( )S[ak Vi En on + @u* VK E, ]dk

_ ‘f j% o B (4.235)
The third line of (4.235) is obtained from the second through an inte-
gration by parts. We may interpret this result by defining the accel-
eration associated with a state of wave vector k, a,(k) by

dit (V) = S(pn* o, (K)pn d3k (4.236)
This acceleration is:
e 0
(k) = — 72 ok, VkE, (4.237a)

or, in the case of an arbitrarily directed field,

(k) = — h—"z (€ Vi) Vi En (4.237b)

If we make use of the definition (1.40) of the reciprocal effective mass

tensor, we have for the jth rectangular component of the acceleration,
o,i(k)

K=—c & (%) (4.2382)

or

D iy ani(k) = — e6) (4.238b)
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where &;, etc., is the sth rectangular component of the field strength.
These results are just what would be expected in classical mechanics for
a particle characterized by a tensor effective mass.

Following Kane (1959b) and Argyres (1962), we may obtain a
stationary solution of (4.232) which may be used in the discussion of
tunneling. The functions ¢! are assumed to have the time dependence
exp [(— ¢/B)Et]. Then we obtain

[E”u)(k) + ie& %} a1V (k) = Ep,M)(k) (4.239)

The solution of this equation may be obtained immediately:

ky

Pa(K) = k112 exp{ S [E — E, V(K] dk;} O(ky — kyo)O(ks — ki)

(4.240)

The normalization constant, «, is the length of the line (%,, &,0, #,) lying
within the Brillouin zone. We assume for simplicity that this line is
a reciprocal lattice vector. The energy eigenvalue, E, is then determined
by the condition that the wave function must be the same at the end
points of this line, since these are equivalent points. Then the change

in the phase angle in a distance x must be an integral multiple of 2x.

x/2
"31? 5 [E — E,O(K)] dky’ = 2vn
— x/2

where v is a positive or negative integer. We will henceforth designate
the eigenvalues in the presence of the field by the index »:

x[2

B =y 2 EEAU(k') k., (4.241)

— /2

The energy spectrum in the presence of the electric field contains a
series of discrete (Stark) levels, separated by 2neé’/«. If the lattice
parameter is 4, this separation is of the order e€d. This is quite small
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compared to typical band energies for fields less than 10° volts/cm.
The existence of these levels was pointed out by Wannier (1959, 1960).

We now wish to consider the theory of tunneling in time-dependent
perturbation theory, following the approach of Kane (1959b). Note that
we do not treat the entire electric field as a perturbation, but only that
part connecting different bands. The one band problem has already been
solved. Other studies of tunneling are those of Zener (1934), Houston
(1940), McAfee ef al. (1951), Franz (1958a), Keldysh (1958, 1958a),
Price and Radcliffe (1959), Argyres (1962), and Fredkin and Wannier
(1962). There are still some controversial problems in the theory, however,
and further work will be required before the problem can be regarded
as solved. A more complete discussion of the calculation of the tunneling
current will be found in Appendix IV.

The probability per unit time, w, of making a transition from band
v to band ¢ is given by the usual formula:

2
w — %’ |M_,[2 p(E) (4.242)
where M, is the matrix element for the transition

M., = E% *0(k) (e X ol ) V() 4% (4.243)

Ky

= ? E X.(k) exp {E% 5 [E.O(K') — E, W (k)] dkx'}dkx
: 0

The tunneling connects states of equal energy. The quantity p(E) is the
density of states for the transition. Considerable controversy has
surrounded the use of this formula since, as we have seen above, the
levels are discrete, and (4.242) is derived on the assumption of a continuum
of levels. Kane choses the density of states to be

1 K

PE) = 5= 5os (4.244)

where AE is the interval in energy between two Stark levels whose
quantum numbers » and ' differ by unity. This use of a density of
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states was criticized by Price and Radcliffe, but Argyres has shown that
a correct answer results provided that small oscillatory terms in tunneling
current due to the discrete nature of the Stark levels can be disregarded.

The rate of tunneling is computed in the following way. The transition
probability, w, is multiplied by the density of states in k-space which
is, in this case, 2x/(27)% (the factor of 2 takes account of spins), and is
integrated over the transverse momentum components. If # is the
number of electrons which transfer from the valence band to the con-
duction band per second per unit volume, we have

"= (227")3 S w dky dk, (4.245)
One should note that the density of states for the normal band does not
enter the calculation, as one might expect in a naive theory.

It is necessary to determine the matrix element M, to obtain an
explicit expression for the tunneling current. The integrals can be eval-
uated approximately by the method of stationary phase, making use
of the analytic properties of the function E, — E,. We note that it is
possible to determine the quantity X, in the vicinity of a band edge
from effective mass theory (Section 1.7). Details of the evaluation are
given in Appendix IV. The final result for the tunneling current in the
simple two-band model considered by Kane turns out to have a form
quite similar to (4.223): It contains an exponential whose argument
depends inversely on the electric field strength and is directly proportional
to the 3/2 power of the band gap.

We note in conclusion that Adams (1957) and Wannier (1960) have
proposed to eliminate the interband matrix elements X, - from (4.226)
by a cannonical transformation. Kane has shown, however, that the
tunneling effect is substantially unaltered by this transformation.

4.9 Optical Properties of Semiconductors

In this and the following two sections, we will consider the interaction
of a system of Bloch electrons with an alternating electric field. The first
topic we will consider is the theory of interband transitions, which makes
possible an explanation of the optical characteristics of semiconductors
in terms of band theory. Ordinary semiconductors exhibit, in the visible
or near infrared spectral regions, a rapid increase in the absorption of
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light (as the photon energy is increased) which is associated with the
onset of band to band transitions. For frequencies below that of the
fundamental absorption edge, the absorption is small close to the edge,
but increases with increasing wavelength roughly as 1/w? for long
wavelengths owing to free carrier absorption.

We will ignore the possibility of exciton formation (bound states
of an electron and a hole) and will discuss the calculation of the absorption
constant. The Hamiltonian for an electron in an external field has been
given previously:

(p +eA)®

H =
2m

+ V()
In the standard semiclassical radiation theory, it is customary to neglect
the portion of the Hamiltonian quadratic in A, and to treat as a pertur-
bation (in a gage in which V- A = 0)
e ieh
H=—Ap=——A-V (4.246)
m m
Let us consider the matrix element of the perturbation between a
final state #,,.(k’, r) and an initial state ,(k, r). We choose for the vector
potential a monochromatic plane wave A, €, ¢"® " *, in which €, is a
polarization vector. Then

Hy= _:ln_ (' X'|A - plnk) (4.247)
'L.eh 1t %* N .
p— _1n_A0 € e—zk .r u,,,(k’, I‘) 8- r V{gtkmun(k, I‘)} a3y
The quantity in brackets is of principal concern to us.

[...]= jeﬂk +8 =K1y Rk ) V(K T) d% + (4.248)

ik g R +8 —K) T % (1 py,, (K, 1) d3

The functions ), Vu, and u), u, are periodic in the crystal and so
may be expanded in plane waves (whose wave vectors are reciprocal
lattice vectors) as was done in Section 4.1 in discussing the orthogonality
of the basis functions for the Kohn-Luttinger representation. Provided
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that the wavelength of the electromagnetic wave is sufficiently long so
that if k' and k are within the zone k 4+ s — k' is not a reciprocal lattice
vector, we obtain

(27)3

[]="5 0k+s—Kk) Su:‘:(k, 1) Voo (k, v) d3 (4.249)

cell

The integral includes a single unit cell whose volume is 2. The delta
function expresses the conservation of momentum in the absorption.
For light in the infrared and visible regions of the spectrum, s is small
compared to the dimensions of a Brillouin zone: in a simple cubic lattice
of lattice parameter a, s/K; = a/l, where A is the wavelength of the
light, and K, is the length of the first reciprocal lattice vector. Under
normal circumstances, this ratio is of the order of 10=3. It is then a
rather good approximation to neglect s. With reference to an energy
band diagram, first order optical transitions are referred to as vertical.

It is necessary to compute the transition probability. One might
expect some difficulty from the square of a delta function, which arises
when one considers the square of the matrix element. However, one can
show that the transition probability per unit volume per unit time is well
defined and contains only one delta function of momentum conservation
(Bethe ef al., 1955). Further, since one must consider in a solid not transi-
tions between discrete states but rather transitions between groups
of states, it is necessary to integrate over ranges of states in k'’ and k.
When this is done, the delta function of momentum conservation renders
one integration trivial, and the following expression for the transition
probability is left.

w= 2 (ﬁ—)j |H 2 8(E,(K) — hw — Eq(k)) d3k (4.250)
A \8nd t " " ’
(we count both directions of the spin) in which H, is a reduced matrix
element:

y 3
Hi=—— 5 dge Su:,(k, 1)V, (K, 1) d3 (4.251)
cell
It is necessary to specify the band structure for further progress.

A particularly interesting case is one in which the bands #» and »’ both
have extrema at k = 0. We put
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k2 k? , h2k?
En(k):_W» En(k)—Eg—f—W
The bands, henceforth referred to as valence and conduction bands, are
separated by a gap E, at k = 0, and have effective masses m,. and m,
respectively. Then

R k2
2u

E,) —hw—E,=E;+ —how (4.252)
in which u = m* m */(m* 4+ m *). We shall further suppose that the
matrix element is independent of energy. This will be a good approx-
imation if the transition is allowed at k = 0, and the gap is not too small.

To perform the integral, we note that
b
7 dx
jg(x)a(f(x» dx = Y g(x)

& (4.253)

%o

in which x4 is a root of f(x), and the sum includes all the roots in the
interval from a to b. In the present case, g = 4nk?, { is given by (4.252),
and we find:

3/2
w = (2;24 lHﬁ|2 (hw —_ Eg)1/2 (4254)

The important result here is the dependence of the transition
probability on (Aw — Eg)l/z. This energy dependence can be observed
experimentally in absorption measurements. The absorption constant
is defined as the ratio of the energy removed from the incident beam
per unit time and per unit volume to the incident flux:

number of transitions per unit volume and time
incident flux

o = (hw) X (4.255)
The energy flux is interpreted as the product of the energy density and
the velocity of flow. The energy density in the medium is €2, which
when averaged over a cycle gives ew? 4,%/2, in mks units, with ¢ the
permittivity, 4, the amplitude of the vector potential, and w the circular
frequency of the wave. The propogation velocity is ¢/n, where # is the
index of refraction, and dispersion is neglected. Note that ¢/n = ng,,
where ¢, is the permittivity of free space. Hence
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2hw
0= —-" (4.256)

 wnegedg?
where w is the transition probability. It is convenient to introduce an
effective momentum matrix element for the transition by

2

(27)* —|p-ef (4.257)

2
h 0

*
Sunr € Vu, d3

cell

We can now combine (4.257), (4.256), (4.254), and (4.247) to obtain
a final expression for the absorption coefficient for direct transitions

L ooewm( B\ 202
a—-K%W 1—% with K:m“)‘GP

(4.258)

If the transition between valence and conduction bands is forbidden
by a selection rule at the band extrema, it will occur in the vicinity of
the extrema as components of different symmetry are included in the
wave function. In this case, the matrix element H, will generally be
proportional to k. If this used in (4.250), a transition probability pro-
portional to (hw — E,)** is found. The character of the transition, and
information concerning the symmetry of valence and conduction band
wave functions can thus be determined by observing the energy
dependence of the absorption coefficient near the threshold.

It frequently happens, however, that the valence and conduction
band extrema are located at different points in k-space. An optical
transition between them usually requires, in this case, the assistance
of a phonon to supply the additional momentum. Such processes, which
are called indirect transitions (Bardeen ef al., 1957), may occur in two
ways: (1) An electron in the valence band may absorb a photon and
make a transition to an intermediate state in the conduction band of
essentially the same wave vector, and then a phonon may be emitted
or absorbed to yield the final state: (2) Alternatively, the photon may
excite an electron from a valence band state directly below the con-
duction band minimum, with the hole being transferred to the valence
band maximum by phonon emission or absorption. The final state is the
same in both cases.
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Indirect transitions are studied in second order perturbation theory.
It is shown in elementary quantum mechanics (L. I. Schiff, 1955), that in
second order, time-dependent perturbation theory, one must replace
the matrix element H;,. which appears in the usual expression for the
transition probability by

H/m H mi ¢

X B (4.259)

m
where the index m refers to the intermediate states. In an indirect
transition one of the matrix elements has the form (4.247), in which the
electron interacts with the electromagnetic field; and the other involves
the electron-phonon coupling. The matrix element for the absorption of
a phonon of wave vector k is proportional to N¥2, where N, is the number
of phonons already present with wave vector k, while the matrix element
for emission is proportional to (N} 4 1)"/2. Since, in thermal equilibrium
at temperature T, N, is proportional to (¢%7 — 1)~! (where the energy
of the phonon has been written as xf and « is Boltzmann’s constant),
there is a characteristic temperature dependence of the absorption
constant for these transitions.

We usually cannot evaluate the sum in (4.259) owing to ignorance
of the spectrum of intermediate states and of the electron-phonon inter-
action. Thus, it is not possible to give an expression for the transition
probability comparable in detail to (4.258). We can, however, determine
the dependence of the absorption constant on photon energy. To do this
we integrate the delta function of energy conservation over a range of
initial and final states. In the present case, the requirement of momentum
conservation does not make one of the integrations trivial, because the
phonons can take up what momentum is required. Consider a transition
in which a phonon is absorbed. Let us choose the zero of energy at the
conduction band minimum, and let E,, E,, and E, represent the energy
of states in the conduction and valence bands, and the energy gap, re-
spectively. Energy conservation demands that

E;=E; + ho + b (4.260)
Since the densities of states in the conduction and valence band are pro-
portional to Vf, and V: E, — E,, respectively [(—)(E, + E,) is a positive
number], if one assumes the sum in (4.259) to be independent of energy
{the optical transition is allowed), one has to evaluate
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H VE; V=E,=E.6(E: + hw + x0 — E) dE;dE;  (4.261)

The integral over E; may be done immediately. The remaining integral
has limits 0 and Aw + «6 — E, and is

hw+K9—Eg

E [Efliw + k0 — E; — E[|V2 dE; (4.262)
0
We then obtain

%n(hw + k6 — E,)? (4.263)

It suffices to change the sign of «0 to obtain the result for phonon emission.
This expression may be combined with the factors involving the number
of phonons to put the absorption coefficient in the form

o= C|— 2 (hw — E,— kB)y(ke — E, — xb)

1—¢— 0T
1
R (Ao — Eg 4 x0)2n(how — E; 4 x0)|  (4.264)

in which C contains the unknown factors and # is a unit step function.
This formula was first given by Macfarlane and Roberts (1955). When
«'? is plotted against hw, the curve lies close to one straight line for
E,— k) <how<E,+ 8, and close to a steeper line for hw > E, + «0.
From analysis of the absorption in indirect transitions, it is possible to
deduce the dependence of the energy gap on temperature, and by
comparison with the vibrational spectrum (which is assumed to be
known) to determine the separation in k-space of the valence and
conduction band extrema.

4.10 Optical Absorption by Free Carriers

The optical properties at long wavelengths of semiconductors which
contain appreciable numbers of free carriers are dominated by the contribu-
tion from the carriers. The importance of free electron absorption in
metals is obvious.
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We will generalize the previous discussion of the optical absorption
in the following way. The current produced by an alternating electro-
magnetic field, described classically, in an electron system will be
calculated and used to obtain a complex conductivity from which the
transmission and reflection coefficients may be computed according to
the standard procedures of classical electromagnetic theory. Only
frequencies sufficiently high so that relaxation effects may be neglected
will be considered. Our discussion follows that of Wilson (1936).

We begin with the time-dependent Schrédinger equation for a single

particle:
ik ﬂj = HY

The electric current density, j, is determined by the requirement that an
equation of continuity be satisfied:

7
Vej+ 22 ~0 (4.265)
ot
in which p, the charge density, is — ey* iy. The Hamiltonian of the system
is:
(p + €A)?
2m

in which @ is the scalar potential, and A the vector potential of the elec-
tromagnetic field. A standard calculation yields an expression for j:

H= —ed + V()

i= o P ) — S Ay (4.266)

If the electrons are distributed in states characterized by wave vectors k,
such that there are N(k) electrons in k, Eq. (4.266) applies to each state
separately, and the total current density J is

J= 2 Nk (4.267)
k

in which j (k) is given by (4.266) with ¢ replaced by (k, r). Only occupied
states are included.

We consider initially a monochromatic plane wave described by
a vector potential

A=Ay (4.268)
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The current is calculated according to time-dependent perturbation theory
in which the perturbing Hamiltonian is the same as in (4.246):

€
H=—A":
m P

and we consider only terms of first order in 4. We shall denote the
eigenfunctions of the unperturbed Hamiltonian as ¢, (k, r), or mores imply
asi,. The complete wave functions have the time dependence e~ **»* with
w, = E,(k)/h. On account of the k selection rule discussed previously
[Eq. (4.249)], it suffices to expand the perturbed wave function ¥ in
terms of function i, (k, r) for fixed k, and thus, for the present, the k
designation may be dropped. We write

Y= D calt)me " (4.269)

To determine the ¢,, we substitute this expression into the Schrédinger
equation, multiply by .* ¢, and integrate over all space. When use
is made of the orthonormality of the i, we obtain an equation for thec,,
which is:

. dcs ’ Tw !
h-— = n Ldsp i .
ih =t = D on Hne (4.270)
in which
Wep = Ws — Wy (4271)
and
Hep = | b* H' i, d% = HY, e~ " (4.272)

so that H? is independent of time.

Equations (4.270) may be solved in the approximation, valid through
first order in 4, that all the ¢, on the right side may be neglected except
the one (say ¢p), which pertains to the initial state. Then ¢, may be set
equal to unity, and we have

ik % = Hypd @0~ (s=£0) (4.273)
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This differential equation may be solved very easily. For the initial con-
dition, we will assume the perturbation was turned on at £ = 0, so that
¢,(0) = 0. The solution is

0
Hso

Bowso — )

¢ = [1— @07 (s5£0) (4.274)
The wave function ¥ which is to be used in (4.266) is normalized correctly
up to second order in 4. One finds

. eh
T 2Um

{w‘o* Vibo — o Vifo*] + 2 (en(tho* Vipn — thn Vifip*) ¢~ tonot +

e Pl — o V1] — e (4279

Terms of order A2 and higher have been neglected. The expression can
be simplified when the effect of the sum over k, which is required by
(4.267), is considered. Since E (k) = E(— k), N(k) = N(— k), and currents
from states of k and — k will contribute equally. On the other hand, time
reversal symmetry requires that, for spinless particles

Pu*(K) = thn(— k) (4.276)

Hence, if we sum over currents from states of wave vectors k and — Kk,
the first term disappears. (This is a special case of a general result:
there is no net current in the ground state of any quantum system.) We
will ignore the first term from now on. Next, we observe that the terms
involved in the summation of (4.275) contain the difference of a quantity
and its complex conjugate. Hence we may write

. h — i, 2
f= = 0m 3 (eal® Vibn — hu Vi) € — S A2 (4.277)

in which Im stands for “imaginary part of.”” We must now substitute the
expression for ¢,. Note that

0 i
_i“’not . Hnoe iwt

Eno & h(wnp — )

[cos (w — wnuo)t — 1 + 7 sin (W — wao)t]
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In addition, it is legitimate to choose the wave functions i, i, to be real.
Then the matrix element HY is imaginary, and we get? (set H.o = HO /i)

? The argument in this respect is rather subtle. Suppose the contrary and let

0
H, .
= (o iy — i Vo) = i W
m (Wno — )
cos (W — wup)t — 1 =7; sin (w — wyg) t = s.
Then
J0) = — Im D (a + ib)e— i (r + is)
= 2 [(ar — bs) sin wt — (br + as) cos wt] (2)

Now consider the current from the corresponding state of wave vector — k. In
this case we have, instead of the term (a + b)

e

H«ﬁ;‘(— K H' o(— k) dar] o (— B Viu(— k) — in(— WP (— K]
3)

m(wpg — )

With the aid of (4.276) this becomes

e

) H%(k)H' Yo (k) dﬂr] o (K) Vil (B) — i () Pio()] (4)

Mm(wyp —

Since H’ « iV we have that

S«ﬁn(k)H' o (K) dor = — St/:;" () H (k) dar]*
so that (4) becomes — (a -+ ib)* = — a 4 ib. Hence
(=K = ) [(— ar — bs) sin wt — (br — as) cos o] (5)
and "
i) +i(=K) = — 2 D blrcos ot + ssin o] ®

n

which is just the result which is obtained by making the wave function real.
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=— —Z [sin ( — wao)tsin wt + (cos (w — wag)t — 1) cos wit] x
wnO -

(o Vibn — thn Viho) — — [oP A (4.278)

It is necessary in any physical problem that the perturbing electromagnetic
field be real. The time dependence of the vector potential must be cos wt
(or sin w#) rather than ¢~ **. The current for real A is one-half the sum
of j as given above and a corresponding expression with w replaced by
(— w). Hence we replace (4.278) by

o Z . (4.279)
{[ Cos (w — wyo)t n cos ( + wao)t 1 _ 1 cos wt —
Oy — @ ® + Wuo Wao — @ a0+ @
[smwiz:,o— —ww sin a(:: 1—— C:,n())t sin wt} (o Vb — b Vi) —
o A

We have now assumed that the vector potential is proportional to cos wt.
The electric field, &, is

oA &
&=— —=A,wsinwt; — = Ajw?cos wt (4.280)
ot ot
The current consists of two parts: one in phase with the applied field
(proportional to sin w?), and the other out of phase with the field. Let
these be designated as j, and j,, respectively. The first of these is:

2 . o .
h= ﬁwi 2 (j,l/,n* & - Py dgr) [511; (cwno — w)t __sin (w + wao)t

Wno — W) (wno + w)

(Yo Vibm — b Vibo]  (4.281)
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In the limit of large times,

. sin (wno + w)?
lim —————— = nd{ww + w 4.282

t— o0 Wno :i: w ( 0 :t ) ( )
The portion of the total current which is in phase with the field is:

et

= ot wi

Z G I* & - pify d37) [8(wno — @) — S{wno + w)] X
k.»

(o Vi — i Viy]  (4.283)
A conductivity is defined through the Fourier transform of the current

and the field. Define

F1l4) = 5 Jy e dy (4.284)

We are concerned only with the long wavelength limit (¢ — 0) of the
conductivity, since for optical frequencies the external field will not
vary appreciably in distances of the order of a lattice spacing. Hence
we compute _#,(0). The basic integral is

7‘& (o Pibn — i Vi) % = QM Vindty = Zpo,  (4.285)

i

We obtain for #,(0):

FA0) = 7 TN S Donlé - o) [Bomo — ) — Seowo + )]
m2 wh
k n

(4.286)

In a cubic crystal, the conductivity is isotropic, and the current is related
to the field by Ohm’s law

F1=06 (4.287)
in which the (real) conductivity ¢ is given by

Tre?
0= —-
m? wh

2> N D [Pon]? [8(wno — @) — S(wno + @)]  (4.288)
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It follows from the analysis of the previous section that the conductivity,
regarded as a function of frequency, exhibits an edge followed by a rapid
rise at the onset of an interband transition.

The portion of the current out of phase with the electric field is

. e? o& 1 o0&
h=—_"5 [|‘/’o|2 ETRREY 2([% e Py d‘°") (4.289)

2im

Wno — W Wyo + @

(o Vb — 1 i} {1 —cos (wm —w)t | 1 — cos(wa+ w)t”

We must now sum over k. In the limit of large times, we can make use
of the relation

lim 5 oy L=CosH 50 p 5 A2 4y (4.290)

in which P signifies the Cauchy principal value of the integral [provided
f(x) possesses a derivative at x = 0], since the sum over occupied states
is, in fact, an integral. Then we have

2 &
= Z N(k) {l%lz% - 2 G Yo s pwsf)

[ho Vibn — i V‘/’o]} (4.291)

In order to determine the dielectric constant, it is necessary to consider
the Fourier transform of J, in the limit of long wavelengths. Since i,
is normalized, we obtain for £,(0) in a cubic crystal:

Fa0) = aa—f”(— me—;) DN EK) [ 2’ @t ‘p‘”" ] (4.202)

wo—w

We can simplify this equation through the use of the sum rule (1.41b)
for the effective mass (which we are here considering to be a scalar)

.m 2 |P0n|2
W_1+W?w—m
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Let the coefficient of 26/o¢ in (4.292) be denoted as y,, the electric
susceptibility of the electron system. If «, is the (dimensionless) dielectric
constant of the material, and ¢, is the permittivity of free space, then

e N e? 2¢2 2
e i
k n

€ Mop Eg W2 Won(won — w?)
(4.293)
in which
1 1 Nk
1Ly Nk ) (4.294)

*
~ m (k)
and N, is the number of conduction electrons per unit volume.
The quantity m:; can be interpreted as an optical effective mass
(Cohen and Heine, 1958). The scalar effective mass m*(k) is related to
the band structure by :

1

— 1 2
(i)~ o % EK)

The sum over k in (4.294) can be replaced by an integration in the usual
way:

1
E — 3
T 478 jd &
We obtain

1 1

 —— _\BE V2 E(k )
o 12n3h2NCSdkl7k E(k) (4.295)

This expression may be transformed by Gauss’s theorem into a surface

integral of the velocity v, = V E/h over the Fermi surface. For a
monovalent metal, we obtain finally (Cohen and Heine, 1958)

-1
Mop = Fikg® Sg° U dSk - vk] (4.296)

in which Sg0 is the area, and kg the radius of a spherical free electron
Fermi surface which contains N, electrons. The optical effective mass
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determined here should be contrasted with the expression for the “thermal
effective mass” which was obtained previously.

The optical properties of the material considered are determined
from the solutions of Maxwell’s equations for a material whose (real)
dielectric constant and conductivity are given by (4.293) and (4.288)
respectively. The absorption constant may be calculated from these
quantities by standard techniques, which we will not discuss here. The
behavior of the dielectric constant is, however, of considerable interest.
The second term of (4.293) is analogous to the contribution to the di-
electric constant from the free electrons of a classical plasma. We may
define an effective plasma frequency, w,, for the material by

o Ncé?

Wp™ =

e (4.297)
Mop €

The third term is the atomic polarizability, as modified in the metal, if
the sum over k includes all fully occupied (as well as partially occupied)
bands. One sees from (4.296) that a fully occupied band, which does

not have a Fermi surface, makes no contribution to m_Y. For frequencies

-
o much smaller than the threshold for interband transitions, Eq. (4.293)
simplifies to

2

w
Ke= 141 — 5 (4.298)

in which «, is the contribution from the atomic polarizability

2¢? 1 |p1”|2
, = — a8 4.2
Ka ™= 2 hey 2 473 j & w3, (4.299)

n,l

The sum on / in (4.299) includes all occupied bands; the sum on # includes
all bands, whether occupied or unoccupied. In this limit, the dielectric
constant has the simple form 4 — B/w?2. At an absorption edge, however,
a negative contribution to «, appears as a result of the change in sign of
one of the denominators in (4.293). Therefore the (real) dielectric constant
will usually have a maximum at a threshold for absorption.

The dependence of the dielectric constant on frequency specified
by (4.298) has been observed in some cases. It is then possible to deter-
mine the optical effective mass, and the atomic polarizability. Cohen
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(1958) has observed that it is possible to make a very good least squares
fit to the experimental data of Ives and Briggs (1936, 1937a, b) concerning
the refractive index of the alkali metals (except for lithium, which was not
measured), with a function of the required form. The agreement is very
much improved with the inclusion of «,, which had been neglected by
Ives and Briggs. The atomic polarizability so obtained is in quite reason-
able agreement (except for rubidium) with values of polarizabilities of
alkali ions in alkali halides as previously determined by Tessman, Kahn,
and Shockley (1953). The optical effective masses given by Cohen (1958)
and Ehrenreich and Philipp (1962) for the alkali and noble metals are
quoted in Table XXIII.

TABLE XXIII

EXPERIMENTAL OPTICAL EFFECTIVE MASSES

Metal m:p Metal m:;,
Na 1.01 + 0.02 Cu 1.42 + 0.05
K 1.08 4+ 0.02 Ag 1.03 + 0.06
Rb 1.08 4+ 0.03 Au 0.98 + 0.04
Cs 1.02 + 0.02

One noteworthy feature of Equation (4.298) is that the dielectric
constant, «,, is negative for frequencies w, below a critical value w,

2
2__ W

14k,

we (4.300)
Under these circumstances, the metal is totally reflecting. It becomes
transparent, however, when o exceeds w, This transition has been
observed in the alkali metals. There is, of course, considerable absorption
for w > w,; this has been attributed by Butcher (1951) and by Cohen to
interband transitions.

It has also been possible to determine effective masses of electrons

in semiconductors from the dielectric constant (for example, see Spitzer
and Fan, 1957).
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There is an interesting relation between the optical effective mass,
given by (4.296), and the thermal effective mass, m.*, defined in Section
3.3 in connection with the electron specific heat. Recall that

s — Ml [ dSe
v SFO Uk
Hence
me _ 1 [(dSe -
m¥ ~ S®|) dSr Vi (4.301)

Averages of v, and 1/v, over the Fermi surface are involved. The Schwarz
inequality, which applies to any two arbitrary functions f and g, states that

(4.302)

2
Hdstg < Hdstz Edngz

Hence

in which Sy is the area of the actual Fermi surface. Thus we have the
inequality:

me* > i 2
m:; = SFO (4304)

Equality holds only if the Fermi surface is spherical, which implies that

vy 1s constant over the surface.

0 * *
In a monovalent metal, we must have Sg > Sg, and hence m; > mg,

if the Fermi surface does not touch the Brillouin zone. However, if
contact occurs, it is possible that Sp < S% since the area of contact
is not actually a part of the Fermi surface. Interpretation of experimental
results on the basis of these inequalities is not always certain on account
of the imprecision of measurements. It seems, however, that in all the
alkali metals, with the possible exception of lithium for which the data
is really insufficient, one does have m > m,, and therefore contact is
unlikely.
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We now consider briefly, in a very phenomenologic fashion, the
effect of including relaxation processes. In the previous discussion, the
in-phase portion of the current results only from interband transitions
because it is only in these that conservation of wave vector is possible.
If phonon interactions are included, intraband transitions in which a
photon is absorbed and a phonon is absorbed or emitted are possible. These
processes are quite analogous to the interband indirect transitions pre-
viously discussed. A phonomenological theory of the resulting optical
absorption, given originally by Drude (1902) and Zener (1933), can be
worked out easily on the basis of the semiclassical equation

% + % = ;—{ - ;—é}sm wt (4.305)
in which & is the external electric field, which we have assumed to have
the time dependence sin wf, and 7 is the relaxation time for electron-
phonon scattering, which is assumed to be constant. This equation can
easily be solved for the steady state velocity v, from which the current
density J = Nev can be found:

Ne?1é,

7= m*(1 + w?7?)

(sin wt — wT cos wt) (4.306)
As before, the current has an in-phase and an out-of-phase component.
The (real) conductivity, o, is
Ne2t

- 4.307

a m*(1 + w?t?) (4.307)

The conductfvity vanishes in the limit of no electron-phonon scattering

(r = o), or in the limit of very high frequency. It gives rise to the
previously mentioned absorption. The dielectric constant is now

Xe Ne?

— 2 e, — 4.308
Ko = Ka g 2 mreywi(l + lw?td) (4-308)

in which we have, phenomenologically, included the constant polariza-
bility of the lattice atoms in x,. In the limit of high frequencies, the
result agrees with the quantum calculation for m* = mo"; if interband
transitions are not present.
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The utility of this simple approach is that it can be readily generalized
to include effects of external magnetic fields, which cause great difficulty
in the quantum theory. The effects of relaxation are also immediately
apparent.

4.11 Optical Properties in a Magnetic Field

We have previously considered the profound effect of a magnetic
field upon an energy band system. These effects are manifest in the
optical absorption, and in the present section we consider the modifications
required in the discussion of Section 4.9 required by the presence of a
magnetic field. The necessary extension of the theory has been given by
Roth et al. (1959), and by Burstein ef al. (1959).

We consider here nondegenerate bands of index ¢ and v which are
characterized by effective masses m* and m conduction and valence
bands, respectively. Since the valence band has negative curvature, in
the presence of an external field B in the z-direction the energy levels in
the vicinity of the extremal point, which we take to be k = 0, are

E,=E;+ ho i + 1) BhE b g 4.309
n— Lg + W + 2 + ’ch* + 2mogc ms, ( . )
h2 k2 eh
I 1y IR
E” ha)v(l — 2) 2mv* + 2m0 8v BMS

The quantities w, and w, are the cyclotron frequencies for the conduction
and valence bands respectively: w, = eB/m_*, etc. m,is the spin quantum
number which may have the values + 4. E, is the energy gap in the
absence of the field, and we have chosen the zero of energy to be the
valence band maximum, also in the absence of the field. When the field
is present, the minimum separation between the bands is

heB
AE = Eg + } hwe+ o) — 7 — (& + &) (4.310)
My
The term involving the cyclotron frequencies is generally dominant so
that the effect of the magnetic field is to increase the energy gap and

hence to displace the absorption edge.
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We wish to obtain the selection rules and absorption constant for
the allowed transitions. Spin will be neglected in this discussion. The
wave functions are, in lowest approximation, products of Bloch wave
functions for a given band index » and oscillator wave functions for the
Landau levels (index I)

n = un(r) F11)(r) (4.311)

Let A_,, be the vector potential of the (steady) external field which is
in the z-direction, and Ay be the same function for the radiation field.
The complete Hamiltonian is

(p + eAext + eAR)2

2m

H= + V() (4.312)

Our wave functions are approximate solutions of the eigenvalue problem

( + eAext

m l/1n+V‘//n—E ¢n

so that if the radiation field is weak, the perturbing Hamiltonian, H’, is
now

3(]’ + eAext)
m

H = -Ag (4.313)

The matrix element H ]:i which appears in the calculation of the absorption
coefficient is given by

Hy= %S uX (O F* () [(p + eAext) - Arluo - (O)FP (1) d%  (4.314)

o]

in which ¢ and v refer to the conduction and valence bands, respectively.
The integral may be split into two parts.

Hj = % [ S u* ()P - Ag uy(r) d? jF}‘”(r)Fﬁ'ﬁ)(r) a3 + (4.315)

cell ©

Suc*(r)u,,(r) asr SFI(E)‘(r)(p + eAex) - AR FY(r) d37

cell ©
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In order to obtain this equation, we assume that both the external field
and the functions F,(r) are slowly varying functions of position compared
to the Bloch functions #(r). The first term is responsible for the ordinary
optical transitions. It follows from (4.149) that the functions F) and
F® are independent of the effective mass m*, so that these functions
are the same for the two bands. Since the functions F,, F;, are ortho-
normal, we get only transitions between bands in which there is no change
in the quantum number of the Landau levels. These are the transitions
of interest in the optical problem. The Al = 0 selection rule replaces
the requirement that the y component of 2 be conserved. No change of
k, or k, is permitted.

Since the Bloch functions #, are also orthonormal, the second term
induces transitions between Landau levels belonging to the same band.
The wave functions F; which are given in (4.139) and (4.149) involve
exponentials and simple harmonic oscillator functions. From the
momentum matrix elements for these wave functions, it follows that
the selection rules for transitions induced by the term, which are observed
in cyclotron resonance, are

Ak, =0, Ak,=0, Al=41 (4.316)

The condition A7 = + 1 indicates that the energy change in the transition
will be 4 kw, ,, as would be expected.® If we make the dipole approx-

c, v

imation for the radiation field in the first term, we obtain
Hy = 8(ky — k:)S(k, — k) [Hyi 0y + L Sun’] (4.317)
where A, is given by (4.251) and

0
Iy 8k, — k)O(R, — R)) = W[F,(r) (P + eAext) - ARFy(r) d3 (4.318)
For the present, we will consider only the optical transitions. We
would like to apply Eq. (4.250) which determines the transition probability

to calculate the absorption coefficient. We must, however, use the density

8 This result is valid only when the radiation field, AR, is uniform over the ‘‘orbit.”
If the field varies appreciably in a distance comparable to the extent of the wave
function, the 4! =+ 1 rule does not apply, and transitions will occur for any
integer value of Al. Cyclotron resonance absorption will then occur for subharmonics
of the fundamental frequency.
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of states appropriate to a Landau level, which may be obtained from
(4.148), except for an extra factor of 2 required by spin degeneracy.
We then have in place of (4.250), for a fixed / (and unit volume),

eB 2n h2 k2
W = onlh B S dkz|H/i|2 0 (Eg + hew; + T - ﬁa)) dk, (4.319)
_ B (u\E (B,
ah® \2 ) Vo — (E; + hw))
in which

w = (I + B(we + w5 (4.320)

and ul=mr "t 4+ m} L
The absorption coefficient is obtained from (4.256) after summing
over all pairs of Landau level; for which the denominator is positive.

26%(p - €)2 (2u)'2eB
T am?hiugge w

D [hw — (Eg+ hay)]=12  (4.321)

— K(2u) (;B) Z [he> — (E; + heop)] =112

in which K is given in (4.258), and the matrix element p isdefined in (4.257).
The onset of strong absorption is shifted from the energy E, = E,, for
which it occurs in the absence of a field, to

heB

A
E(,:Egjl——(wc—{—wv):Eg#—W

5 (4.322)

This result is in agreement with (4.311) since we have neglected the spin
interactions here. It is possible to determine u experimentally by ob-
serving the displacement of the absorption treshold in a magnetic field.

One notes the presence of inverse square root singularities in the
expression for the absorption coefficient. These result from the fact
that the density of final states in the expression for the transition pro-
bability is, in this case, characteristic of a one-dimensional band. In
reality, however, the predicted infinite peaks are not observed, not only
because of natural line width considerations and instrumental resolution,
but also because the Landau levels themselves are not arbitrarily sharp
(Blount, 1962b). The effects of line broadening have been discussed in
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the papers cited: Burstein et al. (1959) and Roth ef al. (1959). The result is
that one observes a series of absorption peaks centered approximately
around the frequencies for which the denominators vanish.

The effect of an external magnetic field on the absorption coefficient
for indirect transitions has also been determined. In this case (Roth
et al., 1959) the absorption does not exhibit oscillations, but rather exhibits
a series of steps. The theory has also been worked out for degenerate
bands.

Extensive studies of this magneto-optical effect have been made
for some semiconductors (Burstein ef al., 19569; Zwerdling et al., 1959).
The experimental data can be successfully analyzed and interpreted
in terms of the theory; however, the theoretical analysis is somewhat more
complicated than the preceeding discussion would suggest. This is
primarily due, in the case of germanium, to the complicated structure
of the valence band. The valence band energy levels in the presence of
a magnetic field must be determined from a set of coupled differential
equations, (4.161). In addition, it is necessary to take into account the
deviations of the conduction band shape from a simple parabolic form,
and the departure of the electron g-factor from the usual value of 2
caused by spin orbit coupling. In spite of these complications, it has
been possible to determine the particular transitions between Landau
levels which are responsible for the observed oscillations of the absorption
coefficient. In germanium, the principal magneto-optic effects are
associated with the direct transition between the valence and conduction
bands centered at k = O (rather than the indirect transition to the lowest
conduction band at L). One therefore has a means of probing the band
structure in a region not accessible to ordinary cyclotron resonance
measurements because of lack of carriers. It was possible to make a
very precise determination of the band gap at the zone center, and a
reasonably accurate determination of the effective mass in the k = 0
conduction band minimum.

The theory of optical absorption by localized impurity states
(Bowlden, 1957) and in the presence of an external electric field (Franz,
1958b; Keldysh, 1958b; Callaway, 1963) has also been developed. In the
latter case, one finds that the absorption edge is not sharp, but has an
exponential tail in the gap, and that oscillations due to the discrete
““Stark’” levels are present.



Appendix 1

Some Symmetrized Linear
Combinations of Plane Waves

The construction of symmetrized linear combinations of plane waves
which transform according to a particular row of a specified irreducible
representation of the group of a wave vector was discussed in Section 2.2.
In this appendix the coefficients of the waves in such a combination are
presented for some of the most interesting representations — those which
contain s, p, or 4 spherical harmonics — for a point of full cubic symmetry.

The wave vector of a plane wave in such an expansion can be written
as (2n/A)(a, b, c¢) where A is the lattice parameter and (27/4)a is the
x component, etc. All the waves of a given type which can participate
in any combination can be found from any one of them by applying all
the operators of the full cubic group and thus are vectors whose compo-
nents can be specified by giving a permutation and/or a change in sign
of the original a, b, c.

As an example of the use of the tables, suppose we require the combina-
tion of plane waves of the 200 type which transforms according to row “x”’
in representation I7;. Inspection of the tables shows that the coefficients
for waves of the (a, 0, 0) type are (4, 0, 0), +; (4, 0,0), —. The combina-
tion is

erim'x/A _ g~ 4mix/d

Note that a means — a, etc.

It will be seen that in some cases, more than one combination which
transforms according to a particular row can be formed from waves
of a given type. In such cases, all the combinations have been given.

307
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TABLE XXIV

COEFFICIENTS OF THE PLANE WAVE COMBINATIONS

Wave Iy; Iy, Iy
vectors Iy (%) (#2 — y?) (xy)
a 00 + + + 0
0a 0 + 0 — 0
00a + 0 0 0
aoo + — T 0
0a + 0 — 0
004 + 0 0 0
aaa + + 0 +
aaa + - 0 —
aada + + 0 —
aaa + + 0 +
aaa + - 0 +
aaad + — 0 —
aadaa + + 0 —
aaa + — 0 +
aao + + 0 +
a0a + + + 0
Oaa + 0 — 0
aao + — 0 -
a0a + - + (]
0da + 0 — 0
aao + + 0 -
a0a + + + 0
0Oaa + 0 — 0
aao + — 0 +
aoa + — + 0
0aa + 0 - 0
baa + + 0 + + 0
aba -+ 0 + — + 0
aabd + 0 + 0 0 +
baa + — 0 + - 0
aba + 0 4 - — 0
aab + 0 + 0 0 +
baa + + 0 + - 0
aba + 0 — — — 0
aab + 0 — 0 0 _
baa + + 0 + + 0
aba + 0 + — + 0
adab + 0 + 0 0 —
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Appendix 2

Summation Relations

Certain useful summation and closure relations are obtained in this
appendix. These concern two expressions which occur frequently in the
theory

Zei(k—k )R, and Zeik«(R,-R,')

v k

It is useful to consider first a crystal on which periodic boundary con-
ditions have been imposed, and subsequently to pass to the limit as the
periodic volume becomes infinite. Periodic boundary conditions imply
that we suppose the crystal repeats itself in all respects after transla-
tion through vectors R; = 2N, a; R, = 2N, b; R; = 2N, ¢, where a, b,
and ¢ are the three primitive translation vectors of the lattice. The
concept is made more precise by employing the translation operators
T(R). It is then required

T(2N,a) = [T(a)]2M =1 (A2.1)

etc., where I designates the unit operator.

The derivation of the rules is given below for the case of a simple
cubic lattice: |a| = |[b| = |¢| = a. An extension to other cubic structures
can be made quite simply by considering a cubic cell, which may contain
several atoms.

Let k — K =38; 8= (sq, 5y 53); R, = a(n, ny, ny). Then consider
the summation

N;—1 N,—=1 N,—1

1 .
SIS NN, & 2 D demremee (429

ny=-—N n=—Nyn,=~N,
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The summations are evidently independent. A single one is just
a geometric series:

N,—1 N, —1
1 1 )
iS5y —1i5,Na i5,1,4
o 2 =gy 2 e
-~ N, 0
e— isNa | 1 — eisl2N,a
T 2N, | 1—¢bs
sins; Ny a
== 5 A23
2N, sin s, a/2 ( )

In the limit that N, is large, the sum is appreciable only when both
the numerator and denominator are zero. When this happens, the result
is unity. The condition under which it will occur is s,4/2 =Ixn
or s; = 2nl/a, where [ is any integer. Identical results are obtained in
the other summations and one observes that for the condition above to
hold for all three components, 8 must be a reciprocal lattice vector.
Further, the quantity 8N; N, N, equals the number of atoms in the block
of atoms on which we have imposed periodic boundary conditions, and we
denote this quantity by 4. Hence, we have in the limit of large A4~

1 ik—k’)- .
Si=— 2 TP =1 i k-K=K

(a reciprocal lattice vector)

=0 otherwise (A2.4)

(more precisely, instead of 0 we should have a quantity of order 1/4").

In the second summation, it is convenient to put R, — R, = R,
K = #(n;/Ny, ng/Ny, ng/Ng), B = a(m,, m,, my).

” ” n
ER=atlLm _}_Jm +_3m>
(N1 1N, 2 N, 3

in which »,, m,, etc., are integers. Since the sum includes only values
of %k lying inside or on the surface of a single Brillouin zone, we have
— N, <ny <N, —1, etc. So consider
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Ny—1 Ny—1 N

,—1
1 . [nym Ng M,
S X3 explia( Ty Tar )

ny=—N;n=—Nyn,=—N,
(A2.5)
As before, a single one of the independent sums gives
Ny -1 )
P LA 20
sin am, ¢/2N,
- N,

The quantity am, ¢/, will not be an integral multiple of 2z, so there
will be a contribution of order NV; only when m; = 0. Hence, for large
N,, N,, N,

1 ik-(R, —R./
52:7%761( (R, R,.):(Sv'y/ (A2.7)
Equations (A2.4) and (A2.7) are the fundamental summation rules. It
is useful to examine these sums in the limit 4" becomes infinite. To do
this, we write (A2.3) in the form

Z giasiny _ 2n  as;/2 sinas,N;
a sinas,/2 7,
Suppose first that s; /2 is not an integral multiple of 7.
The Dirac delta function can be defined through the relation

b

8(x) = - lim je"""" dk — lim S0

27 5o b>w TUX
Hence
N,—-1
. 2
lim D giasm — 7" 8(s,) (A2.8)
N;—>©
- N,

If s, a = 2lm, this situation is identical with the case s; = 0, since
the exponentials on the left are unity. Hence we have

. ’ 3
Zeqk—k )R, _ (2[7;) 2’ ok — kK — K) (A2.9a)
i

v
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where the sum over K, includes all reciprocal lattice vectors and £2 is the
volume of the unit cell. If, however, k and k’ are constrained to lie tnside
a single zone, then only the zero reciprocal lattice vector contributes,
so that we get

. , 3
Zeuk—k )Ry (2!72’) ok — k') (A2.9b)

v

The continuous k limit of (A2.7) is obvious. Since the volume of
k-space which is included in the integral is finite and equal to (27)3/2,
we have immediately

(27)
Q2

j a3k e B ) gap Oy’ (A2.10)



Appendix 3

The Effective Mass Equation in the
Many-Body Problem

In Chapter 4, the effects of external fields on the energy levels
of electrons were studied. The entire discussion was based on a one
particle theory, no account being taken of the electron interactions. In
this appendix we will reconsider one aspect of this problem from the
point of view of many-body theory. We will show, following the work of
Kohn (1957, 1958), that an effective mass equation is valid for the descrip-
tion of the change in the energy levels of an insulator in response to a
slowly varying perturbation. Other studies have been presented by
Ambegaokar and Kohn (1960), Ambegaokar (1961), and Klein (1959), who
have extended the original treatment due to Kohn in the references cited.

We consider a system consisting of an insulator plus one extra electron.
It can be proved that the response of this system to a long wavelength,
low frequency electric field is the same as that of a free electron of effective
mass m* moving in a medium having the dielectric constant, «, of the
perfect insulator. The point impurity is included as a special case in
that the bound states which occur when a small positive charge Q is
embedded in the system have a hydrogenlike spectrum given by

m* 2 02
T 2k2n2h?
In addition, it has been shown that the low-lying energy levels in a

constant, external magnetic field B are characterized by a cyclotron
frequency

E,= (A3.1)

eB

We = ——
m*

(A3.2)

where m* is the same effective mass as in (A3.1).

315



316 APPENDIX 3. EFFECTIVE MASS EQ. IN MANY-BODY PROBLEM

We will not attempt to prove these results in general, but will consider
only the case in which a weak, slowly varying, external electric potential
is applied as a perturbation. We are therefore concerned with the
Schrodinger equation.

(Hy + U)T:ihaa—,l:l

for a system of (N + 1) electrons (the N electron system is the “perfect”
insulator) in which U is the perturbation mentioned above and Hj is
given by

i2 2
Hy= 5 +VE)+ D — (A3.3)
: m L]
T j>1
where V(r;) represents the periodic potential. It follows from (2.179)
that the (IV 4 1) electron wave function which is an eigenfunction of
H, can be written in the form

l’bn(k, Iy, ..o, rN+1) = eik'Run(k, | CTRRIIN I'N+1) (A3.4)
where
N+1
R=Yn
i=1

and k is the total wave vector of the system. The quantity » denotes
the set of quantum numbers other than k required to specify a state. The
energy of a state is denoted by E (k). We suppose that the ground state
of the system has k = (0), and we put » =0 for this state. Our
semiconductor is defined by the following postulated property of
the energy spectrum: All excited states of the system with k = 0 have
energies which differ from that of the ground state by a finite amount, AE.

E,(0) — Eo(0) > AE

This property is characteristic of the independent particle model of a
semiconductor, but not of a metal: it is found to be true experimentally
for real semiconductors since electromagnetic radiation, which causes
transitions between states of the same k, is not absorbed if the photons
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have less than a definite energy. The energy E,(0) is assumed to be an
absolute minimum, with respect to k.

The perturbation problem will be attacked in the crystal momentum
representation. The perturbed wave function for the system is expanded
in the Bloch type functions:

P, oyp) = D) j Pu(K)n(k, Ty . Ty 1) A3k (A3.5)

"

in accord with the procedures of Section 4.1. Equation (4.6) for the
coefficients ¢, (k) is still valid

N a ’ ! ’ ’
[E,,(k) .y E] onu(k) + 2‘ Sd% KU Ky (K) =0 (4.6)
in which the matrix element is now given by

(nk|Un' k') = 51//,,*(1(, r. Iy ) U (K, 1. By ) 3V 0y (A3.6)

We are interested in solutions for a weak perturbation U which describe
the states close to the ground state. Hence we set » = 0 in (4.6). By
perturbation theory g, (k) is of order U for #’ % 0, and the contribution
from such states if of order U2 This we will neglect. Equation (4.6)
then has the form

[mm—MH%®+ﬁwwwwwmm=o (A3.7)

It is assumed that the perturbation U can be expressed as a sum
of perturbing potentials acting on each electron

U= 'Um) (A3:8)

The functions U(r;) are identical except for the labeling of the indepen-
dent variable. Each U(r,) may be represented as a Fourier integral

1

V@) = G

Swmﬂ”ﬁq (A3.9)
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Then the total perturbation can be expressed simply in terms of V(q):

U=(—2;—)—3/25V(q>p(q> & (43.10)
where
plg) = D'V (A3.11)

The quantity p(q) may be interpreted as a Fourier coefficient of the elec-
tron density; since if we have (N + 1) electrons located at points r;, the
electron density is 2; é(r — r;), and the Fourier transform of this function
is p(q). Then we have for the matrix element of the potential

(Ok|U|0k") = Ed’*‘qV(q)E%*(k. L) DS (kL r L) @

= jdaqV(qw(k' + g — K){0K|p(q) 0k + ) (A3.12)
The last step follows from the Bloch form of the wave function, since we
have in the first line the Fourier transform of a periodic function. The

perturbing potential is assumed to be sufficiently slowly varying so that
only small values of q are important. Kohn has shown that

lim (n, k|p(q)|»’, k + q) = ié,mf (A3.13)
q—0 K

where « is the static dielectric constant of the insulator. Hence we
approximate the matrix element of the potential by

(Ok|U|0K’y = % V(k— k') (A3.14)

The contributions from terms of higher order in the expansion of p(q)
will produce deviations from this simple, static, screening. Equation (A3.7)
now has the simple form

[Eo(k) — ik a—ﬂ volk) + -i-jd"k’ V(k—K)p,(k) =0  (A3.15)
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For small values of k, it is possible to replace Ey(k) by the leading terms
of its power series expansion. In accord with our fundamental assumptions,
this is

h?k?

Eo(k) = EO(O) + 271%*

+... (A3.16)
where k is the total wave vector previously described, and m* is the
effective mass.! When this is substituted into (A3.15), the resulting
equation may be transformed back to position space exactly as was done
in Section 4.3. The result is just the effective mass equation (4.87) with
the one difference that the potential which appears is screened by the
dielectric constant of the system.
B2 oF

[_ I Iz 4 U'EL)]F(I') _—_iha—t (A3.17)

in which F(r) is the envelope function given by:
F@r)= Se"k"%(k) a3k

which was introduced in Section 4.3.

1 The generalization to a tensor effective mass is trivial.



Appendix 4

Evaluation of a Tunneling Integral

In Section 4.8 the theory of tunneling between bands in the presence
of a uniform electric field was discussed. Let the field be in the x direction.
Then the tunnel current is determined as the integral of the probability
for transitions between bands, w, over a plane in k-space perpendicular
to the field. The transition probability is proportional to the square of a
matrix element, M, for which a formal expression was given in Eq.
(4.243):

cv?

k

x

Mo, = -ﬂxcv(k) exp {H [E(K) — E,0(K')] dk;} dk, (4.243)
0

— K

Here F = ¢6. In this appendix we will discuss the evaluation of this
integral following the procedure of Kane (1959b).

In order to evaluate the integral it is desirable to have an expression
for the difference in energy between the bands which is valid for complex
k as well as for real k. To find this, it is necessary to examine the
Hamiltonian of which E_ and E, are eigenvalues. The simplest situation
is one in which only two sphérical bands E, and E, need be considered.
In that case we have in atomic units

2
= (Eg +E Qkp) (A4.1)

2kp k2
The zero of energy is taken at the top of the valence band. E, is the
band gap at k = 0. The bands are connected by the momentum matrix
element, p, which has been chosen, for simplicity, to be a real scalar
quantity. The eigenvalues of H are easily found to be

320



APPENDIX 4. EVALUATION OF A TUNNELING INTEGRAL 321

E 1

1= (Eg + 16k p?)2

The + sign corresponds to the conduction band, the — sign to the valence
band. Near k = 0, we have

4Kk2 42
E,=E;+ K2+ TP (A4.3)
g
2 42
E,— Ik 4k2p
Eg
The reciprocal effective masses are:
1 4p? 1 4p2
B IR = ] 4 }
Me - E,’ My + Eg (Ad.4)
(We write the valence band energy as E, = — k2%/m,.) We define a
reduced effective mass, p, by
,l_t_l — mc—l + mv—l
The momentum matrix element is related to u by
$* = Eyf8u (Ad.5)

The difference in energy between the conduction and valence bands is

2\1/2
Ec—Ev=n:(Eg2+2Egk)

(A4.6)
7

It is seen that the conduction and valence bands join for certain complex
values of k. It suffices in this calculation to allow only %, to be complex.
The bands then join if k2, = ig, where

E 1/2
g= (”2 L4+ k24 kﬁ) (A4.7)

The integral in the exponential of (4.243) is elementary:
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kx kx
’ ’ kx’?
(Ec — Ev) dky = | ndky = —5~ + (A4.8)
0 0
(BN 5 L 2 ey gl 1+ Ro2Eqfp)'"
2\ 2 8w T T EE F @Eu) (R, + R

It is also necessary to compute the matrix element X,

@y,
Xcv— Qo ? Uc

7

3
o5, Uvd (A4.9)

where U, and U, are the eigenvectors of the matrix H. Let %, and u,
be the vectors at k = 0. A straightforward calculation yields

1
Ue = 7= [0+ E' e+ (= E' 1
n
1
U= g (01— B — (0 4 B (A4.10)

It is now possible to evaluate X_,, making use of the orthonormality
of u, and #u, since the %, dependence of the solutions are entirely contained

in . A straightforward calculation yields
tE2k E32 [k
Neom= 5o = e [ % A4.11
pnP(n® — EP)2 (2,1 772( k ) (Ad11)
We must now calculate M. On substitution into (4.243) we obtain

« k

_ipgerfdb i
M., (2/1)1/2'(5 772 epr Nary

— K

This integral is approximated by deforming the path into the complex
k,-plane to pass close to the branch point located at %, = ig where the
bands join. When the field, F, is small the dominant contributions to
the integral consists of two portions: a contribution from a small
semicircle about the branch point, and a contribution from the horizontal
portion of the contour parallel to the real k,-axis. In the latter case,
the limits may be extended to 4 oo without serious error. We find
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k

3 x iq

g‘;k {exp .Sndk ] 32‘ exp[ Sndk ] (A4.12)

e 0 i)
T ex p Z(Le 1l2q_2
3qu 2u) F

It is now possible to compute the rate of tunneling from (4.245):

_ FEguy 1 Eq 1/2‘]2

For small fields, the integral may be done by transformation to polar
coordinates and extension of the limits to infinity. Under these cir-
cumstances, the exponential dominates, and we find:

F2 [(2u\1 7 ull2 E3i2
_ fnfud — Ad 14
367 (Eg) exp [ F 9 1/2 ] ( )

This result agrees with that of Kane (his m, = u/2).



Appendix 5

Spin Density Waves

We will examine briefly the spin density waves discussed by Overhauser
(1962). The Hartree-Fock equations (2.183) are approximated by

(Hy+ Al = E (45.1)

where A represents the exchange term, which is treated as a potential
with a possible explicit spin dependence. The one-electron wave func-
tion ¢ is not assumed to be an eigenfunction of ¢, and A4 may have off-
diagonal elements connecting the different spin components. Let us
assume with Overhauser that A4 is given by

A=4,+ 4,
where
A4,=—go- (; cos gz -+ isin qz) (A5.2)

where i and i are the usual unit vectors in the x and y directions. Such
an A would occur for a system possessing a fractional spin polarization
at every point, but with direction of the polarization a continuous function
of position. Such an alternating polarization is referred to as a spin
density wave by Overhauser. (It is not necessary for the waves to be
transverse, as in the example.) If the explicit expressions for the spin
operators are used, 4; has the form

0 ez
4, = — g(eiq‘ . ) (A5.3)

We suppose for simplicity that the eigenfunctions of the operator H, + 4,
are plane waves ¢’*'*, and the eigenvalues of this operator are ¢,. This
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is correct for a free electron gas. Then it is easy to see that the operator 4’
connects plane waves of different wave vectors: the two components of
the spinor ¢ have wave vectors k and k 4 q. The eigenvalues of H
may be found by diagonalizing the simple matrix

S
— 8 €k4q

Ex= $(ex + ex+q) &= [Hex — ex+q)? + 212 (A5.4)

to be

and the eigenfunctions are, for the lower branch of the spectrum

1 [cos@ ek'r
QU2 \sinf elk+w-r (A5.5)

in which ¢ points in the z direction, and
cos O(k) = g/[g? + (ex — Ex)?]'? (A5.6)

The square modulus of ¢ is constant, as is the case for a single plane wave.
Hence, no fluctuation in the charge density is associated with the wave,
and no alternating term need be included in H,.

The interaction (A5.2) lowers the energy of some of the states and
raises that of others. The total energy of the system can be reduced.
The surfaces of constant energy no longer have spherical symmetry, so
that the existence of spin density waves in a material would lead to
modifications of the Fermi surface.

It does not suffice, however, the show that the total energy of the
system is reduced with an exchange potential of the form (A5.2) to
prove that the ground state of the system will contain spin density waves.
It is necessary, in addition, to show that such a solution is self-consistent
and this is a more difficult problem. Kohn and Nettel (1960) have shown
that for sufficiently weak- and short-range particle interactions, a self-
consistent solution of the Hartree-Fock equations containing a spin
density wave is impossible. Their discussion does not, however, apply
to the Coulomb interaction for which Overhauser has proved that the
ground state in the Hartree-Fock approximation must contain spin
density waves.
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The question then arises as to whether spin density waves are present
in real materials. Consideration of electron correlation effects not
included in the Hartree-Fock approximation tends to reduce the strength
of the effective electron-electron interaction. The effective interaction
is frequently approximated by a potential ¢~ */r. For interactions of
the strength and range actually encountered in most metals, it is probable
that spin density waves are not contained in the ground state. Chromium
seems, however, to be an exception in that the weak antiferromagnetism
probably can be best described in terms of spin density waves.
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Nickel, 182, 196, 201
Noble metals, 181-190
cohesive energies, 182
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effective masses, 188, 299
Fermi surface, 183
Normal level order, 152

O
Optical properties, 283-306
semi-conductors, 283-289
direct transitions, 287
indirect transitions, 289
free carriers, 289-302
relaxation processes 301
in a magnetic field, 302-306
Orbits, open, 186, 269
Orthogonalized plane waves, 68-74
orthogonality coefficients, 70

P
Partition function, 258, 270
Plane wave expansions, 56-68
symmetrized linear combinations, 57,
307
Point impurities, 221-244, see also
Effective mass
bound states, 222
Koster-Slater mode!, 221
resonant (virtual) states, 233
scattering amplitude, 230
Polarization, 130, 139, 140
exchange, 157, 202
potential, 139
Potassium, 140, 142, 148, 150, 151, 155
Pseudo potential, 74-76, 130-131, 167,
169, 178, 186

Q

Quantum defect method, 124-131

R

Reciprocal lattice, 4
Rubidium, 142, 148, 151, 155

S
Self consistent field, 118, 123
Silicon, 34, 158-173

band parameters, 160
Silver, 182, 185, 188
Sodium, 134, 135, 142, 148, 150, 151, 155
Space groups, 11-16, see also irreducible
representations, double group
class, 13
point group, 13
full cubic group, 14
symmorphic, 14
Specific heat electrons
alkali metals, 150
noble metals, 187
transition elements, 201
Spin density waves, 324
Spin orbit coupling, 46-51, 163, 172, 255
Stark levels, 281, 306
Summation relations, 311

T
Tight binding method, 102-108, 197
overlap integral, 104
two center approximation, 104
Time reversal symmetry, 52-54, 292
Titanium, 196
Transition elements, 191-203
Translation operators, 2, 113, see also
space groups
Tunneling, 276, 282, 320-323

U
Unitary transformation, 235, 248

A
Variational methods, 86-95, see also
Green’s function
integral equation, 88

\a4
Wannier functions, 108-112, 119, 215,
220, 223, 227
Wigner Seitz approximation, 124
Wigner Seitz cell, 6

z

Zinc blende structures, 174
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