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An Experimental and Computational Study of 
the Fluid Dynamics of Dense Cooling Air-Mists 

Jesús I. Minchaca M., A. Humberto Castillejos E.* and F. Andrés Acosta G. 
Centre for Research and Advanced Studies – CINVESTAV, Unidad Saltillo 

Mexico 

1. Introduction 
Spray cooling of a hot body takes place when a dispersion of fine droplets impinges upon its 
surface to remove a large amount of heat by evaporation and convection (Deb & Yao, 1989). 
In metallurgical processes such as continuous casting of steel (Camporredondo et al., 2004) 
the surface temperature, Tw, of the hot steel strand exceeds considerably the saturation 
temperature, Ts, of the cooling liquid (water), i.e., Tw-Ts ranges between ~600 to 1100°C. 
These harsh temperature conditions have traditionally called for the use of high water 
impact fluxes (w, L/m2s) to remove the heat arriving to the surface as a result of the 
solidification of the liquid or semi-liquid core of the strand. The boundary between dilute 
and dense sprays has been specified at w= 2 L/m2s (Deb & Yao, 1989, Sozbir et al., 2003). In 
modern continuous casting machines the w found are well above this value. Most of the 
impingement area of the spray or mist jets will have w 10 L/m2s, with regions where w can 
be as large as ~110 L/m2s. Heat treatment of alloys requiring the rapid removal of large 
amounts of heat also makes use of dense sprays or mists (Totten & Bates, 1993). 
Sprays and air-mists are dispersions of drops produced by single-fluid (e.g., water) and 
twin-fluid (e.g. water-air) nozzles, respectively. In sprays, the energy to fragment the water 
into drops is provided by the pressure drop generated across the narrow exit orifice, while 
in air-mists nozzles a high speed air-stream breaks the water-stream generating fine, fast-
moving droplets (Lefebvre, 1989; Nasr et al., 2002). In air-mist nozzles with internal mixing 
and perpendicular inlets for the fluids, as those shown in Fig. 1, the water splatters against a 
deflector surface and the resulting splashes are further split by the shear forces exerted by 
the axial air-stream, which also accelerates the drops as they move along the mixing 
chamber toward the exit port. Thus, the liquid emerges in the form of drops with different 
sizes and velocities and with a non-uniform spatial distribution (Hernández et al., 2008). 
In addition to w, the size, dd, and velocity, u, of the drops in dense air-mists play a crucial 
role in the cooling of highly superheated surfaces (Bendig et al., 1995; Jenkins et al., 1991; 
Hernández et al., 2011). This behavior stresses the important relationship between the heat 
transfer process and the droplet impact or deformation and break-up behavior. Since, for a 
specified fluid those two parameters, dd and u, determine the local impingement Weber 
number (Wezs= duzs2dd/), which in general has been agreed to characterize the impact 
behavior (Wachters & Westerling, 1966; Araki & Moriyama, 1981; Issa & Yao, 2005). As the 
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impingement Weber number increases the drops tend to deform more widely, break more 
profusely, stay closer to the surface and agitate more intensively the liquid film formed by 
previous drops. Thus, it is clear that knowledge of the local parameters characterizing free 
mist-jets is needed to arrive to a quantitative description of the fluid dynamic interaction of 
drops with a surface and of the boiling-convection heat transfer that would result. 
Experimentally, the water impact flux has been the parameter most frequently determined, 
using a patternator (Camporredondo et al., 2004; Puschmann & Specht, 2004). The drop size 
distribution in mists has often been measured by: (a) laser diffraction (Jenkins et al., 1991; 
Bul, 2001), (b) phase Doppler particle analysis, PDPA (Bendig et al., 1995; Puschmann & 
Specht, 2004) and (c) particle/droplet image analysis, PDIA (Minchaca et al., 2011). The last 
two methods allow the simultaneous determination of the droplet velocity and hence of the 
correlation between both parameters. To the best knowledge of the authors only PDIA has 
been used for the characterization of dense sprays and mists. Particle image velocimetry, 
PIV, has been employed for measuring the velocity of drops in dense mists, but the 
technique did not allow the simultaneous determination of size (Hernández et al., 2008). 
Recent works have presented a detailed experimental characterization of the local variation 
of w, dd and u obtained with typical air-mist nozzles, operating over a wide range of 
conditions of practical interest (Minchaca et al., 2011; Hernández et al., 2011).  
The phenomena involved in the atomization of a liquid stream are very complex and therefore 
the generation of drops and their motion are generally treated separately. Knowledge of the 
influence of the fluid physical properties, nozzle design and operating conditions on 
atomization is crucial to generate drops with the size distribution that would perform better 
the task for which they are intended. The best well-known method for modeling drop size 
distributions is the empirical method (Babinski & Sojka, 2002). This consists in fitting a curve to 
data collected over a wide range of nozzles and operating conditions. In the case of nozzles 
with internal mixing and 90° intersecting streams of air and water, the number and volume 
frequency distributions of drop size have been adequately modeled by log-normal and 
Nukiyama-Tanasawa, NT, distribution functions (Minchaca et al., 2011), respectively. The 
statistical parameters of the distributions have been correlated with the water and air inlet 
pressures allowing the prediction of different characteristic mean diameters, over a wide range 
of operating conditions. Alternative modeling approaches are the maximum entropy and the 
discrete probability function methods (Babinski & Sojka, 2002). 
Two-phase flow models generally treat the continuous phase (e.g., air) in an Eulerian frame 
of reference while the disperse phase (e.g., water droplets) is considered by either one of two 
approaches: (a) Eulerian representation, which treats it as a continuum whose characteristics 
(e.g., velocity, concentration, etc) are declared and updated at grid cells shared with the 
continuous phase, and (b) Lagrangian representation,  where the drops characteristics (e.g., 
position, velocity, concentration, etc) are tracked along their path-lines (Crowe et al., 1998). 
The Eulerian-Eulerian approach is best suited for flows of monodisperse or narrow size 
range drops. But models have been developed to handle efficiently polydisperse sprays by 
describing the distribution of sizes through the moments of the droplet distribution function 
(Beck & Watkins, 2002). The Eulerian-Lagrangian approach can handle more efficiently a 
large range of particle sizes and give more details of the behavior of individual particles and 
of their interaction with walls. Both approaches use submodels to represent phenomena 
such as droplet break-up, droplet-droplet collisions, droplets-wall interaction, etc. 
A two-dimensional (2-D) transient Eulerian-Lagrangian model was developed to describe 
the motion of air and drops in a domain that included the nozzle chamber, the free jet and 
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the impingement region (Hatta et al., 1991a, 1991b). The researchers considered mono-
disperse drops with sizes of 1 and 10 µm and found that the motion of both phases 
depended strongly on the particle size. More recently, a computational model was 
developed to calculate the in-flight and impingement motion of air and droplets with a size 
distribution (Issa & Yao, 2005). The rebounding of multiple drops from the surface was 
simulated by extending empirical information regarding the variation of the normal 
coefficient of restitution of single droplets with the impingement Wezs. The authors claimed 
that large drops with high momentum tended to impinge closer to the stagnation point, 
whereas smaller drops tended to collision farther away because they were entrained by the 
air. In another study, the equation of motion for drops projected horizontally in quiescent 
air was solved considering sizes ranging from 100 to 1000 µm and velocities of 20 m/s and 
50 m/s (Ciofalo et al., 2007). It was found that drops smaller than 100 µm would experience 
large deflections due to gravity, and would never reach a plane beyond 0.25 m. 
The sprays and mists that have been studied experimentally and computationally are far 
apart from those used in important metallurgical processes. In recent studies the authors 
presented a 3-D computational fluid dynamic (CFD) Eulerian-Lagrangian model for free 
dense air-mist jets (Hernández et al., 2008). However, since new and rigorous experimental 
information has been generated the model has been refined in regard to the size distribution 
imposed at the nozzle orifice. The experimental information generated in this work has also 
enabled to carry out a detailed validation of the model. The model predicts very well the 
correlation between drop velocity and particle size, the velocity and trajectory of the drops 
and the water impact density as a function of the nozzle operating conditions, over the 
whole range of practical interest.  

2. Experimental methods and conditions 
A schematic of the experimental set-up used for measuring the mist parameters is displayed 
in Figure 1. It consists of: (a) a patternator for measuring water impact density distribution, 
(b) a particle/droplet image analysis, PDIA, system for acquiring and analyzing the images 
of fine moving droplets to determine their size and velocity and (c) a water and air supply 
system for the nozzle. 
To determine w the nozzle was oriented horizontally and this parameter was evaluated 
collecting the drops entering tubes with an area a, to measure the total volume of water v 
accumulated during a period of time t in the bottles connected to the tubes. The collecting 
tubes were arranged forming a grid and their diameter and spacing are given in Figure 1. 
Hence, the local water impact flux at a position x-y-z was calculated according to the 
following expression, 

   tcosa
)z,y,x(v

)z,y,x(w


  (1) 

where (cos  is the direction cosine of the angle formed between the nozzle axis and the line 
connecting the centers of the nozzle orifice and of a given tube, i.e., (a cos  gives the 
projected area of a tube perpendicular to the direction of motion of the drops. The accuracy 
of the measured w distributions was verified by integrating w over the impingement area to 
compare it with the total water flow rate, W. In general, the computed W had an error 
smaller than ±10 %.
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Fig. 1. Schematic of experimental setup 

The PDIA system (VisiSizer N60V, Oxford Laser Ltd. Didcot, United Kingdom) schematically 
illustrated in Fig. 1 is a spatial multiple counting apparatus that captures instantaneously (i.e., 
in 4 ns) shadow images of the droplets moving through a thin (~400 m) sampling volume  
and analyzes them in real time (Minchaca et al., 2011). A dual head Nd:YAG laser sends light 
pulses (15 mJ at 532 nm) through a fluorescent diffuser to illuminate the region of interest from 
behind while a high resolution camera placed in front captures the shadow images of the 
objects passing in between. The disposition of these elements is illustrated in the figure. 
Operating in dual pulse mode the laser and camera are triggered to capture image pairs 
separated by a time interval of 1.7 s, the figure displays a single pair extracted from 
superposed frames. The analysis of single and superposed frames allows, respectively, the 
simultaneous determination of the size and velocity of the drops appearing. The criteria 
employed for the consideration of single drops and drop pairs have been described elsewhere 
and were validated by off-line analysis of single and superposed frames (Minchaca, 2011; 
Minchaca et al., 2011). Lenses with two magnifications (2×, 4×) were employed to resolve the 
whole spectrum of drop sizes. With each magnification 1000 frames were captured to obtain 
samples with over 5500 drops that ensured statistical confidence limits of 95 % (Bowen & 
Davies, 1951). The magnifications allowed resolving drops with sizes ranging from 5 m to 366 
m and velocities of up to 185 m/s. The field of view with both magnifications was 
2.561×2.561 mm2, which allowed combination of the samples obtained from both to carry out 
statistical analysis of the data. The calibration (i.e., m/pixel) provided for the camera, lens 
and magnifications used was validated measuring standard circles in a reticule and standard 
line spacings in a grating and the agreement was better than 0.5 %. The traversing rail shown 
in the figure moved the diffuser and camera to 7 prescribed x-positions (0.0013, 0.030, 0.059, 
0.088, 0.116, 0.145 and 0.174 m), while the y and zs positions where maintained constant at 0 m 
and 0.175 m, respectively. Differently from the measurements with the patternator the 
measurements with the PDIA system were carried out with the nozzle oriented vertically 
downward, but it was experimentally verified that the distributions of dd and u obtained with 
both orientations were not significantly different. 
The water for the pneumatic nozzle was supplied from a reservoir using an immersion 
pump instrumented with a digital turbine flow-meter, a valve and a digital pressure gauge. 
A compressor provided the air and this line was instrumented with an automatically 
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controlled valve, to minimize flow rate variations, a mass flow-meter and a digital 
manometer. The results reported in this article are for a Casterjet 1/2-6.5-90 nozzle 
(Spraying Systems Co., Chicago, IL), whose operating diagram is displayed in Figure 2. The 
conditions investigated are indicated by the triangles drawn in the plot, and it is seen that 
they correspond to constant W with different air inlet pressures, pa, and vice versa. 
 

 
Fig. 2. Measured operating diagram of a Casterjet 1/2-6.5-90 nozzle 

3. Mathematical model and computational procedure 
3.1 System considered and assumptions 
The 3-D system domain considered in the model is shown in Fig. 3(a), it includes the two-
phase free-jet issuing from a pneumatic nozzle and the surrounding environment; the 
mixing chamber is excluded from the analysis. Since the visualization of the jets and the  
 

    
Fig. 3. (a) Schematic of system considered and computational domain, (b) quadruple 
exposure PIV image of drops in the neighborhood of the nozzle orifice, (c) schematic of 
assumed air-velocity profiles at nozzle exit and (d) schematic of assumed drop velocity 
profiles and water flux distribution at nozzle exit 

(c) 
(d) 

(a) (b) 
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measurements of their impact footprints indicated double symmetry over the x–z and y–z 
planes the computational domain involved just one quarter of the physical domain, as seen 
in the figure. Additionally, since the air- and water-flow rates were stable it was assumed 
that on a time average basis, the flow characteristics of the two-phase jet could be simulated 
in steady-state conditions. For their treatment the continuous air-phase was considered in an 
Eulerian frame of reference and the discrete droplets were regarded in a Lagrangian frame.  
The assumptions for the model were: (a) the liquid emerges from the nozzle as drops. This is 
supported by PIV observations done close of the nozzle orifice, as that displayed in Figure 
3(b). This figure shows a quadruple-exposure photograph with trails of 4-images of 
droplets. Additionally and in agreement with PDIA observations the drops are assumed 
spherical; (b) the size distribution of the drops exiting the orifice is equal to the distribution 
measured at a distance z= zs (i.e., at the typical working distance of a given nozzle). This is 
reasonable since drop coalescence and break-up are rare events. The low volume fraction, 
d of the drops prevents coalescence and the PDIA images, taken at different positions in 
the free mists, rarely show droplet break-up; (c) drops of all the specified sizes leave the 
orifice at the terminal velocity reached in the mixing chamber while dragged by the air. 
Calculations indicate that this would be the case for individual drops and since d is low the 
assumption would seem reasonable for the dilute multi-drop system moving within the 
chamber; in the mixing chamber d< 0.08; (d) the droplets in the jet do not interact with each 
other and only interact with the air through interfacial drag, and (e) the air and the droplets 
are at room temperature and condensation and vaporization are negligible. 

3.2 Governing equations 
Under the considerations just described, the governing equations for the motion of the air 
are: the continuity equation (2), the Navier-Stokes equations (3) and the turbulence transport 
equations (4) and (5), which are expressed as follows, 
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Si in Eq. (3) is the source term expressing the i-direction momentum transferred between the 
air and the drops in a given cell of the fixed Eulerian grid over a Lagrangian time step. It is 
equal to the change in the momentum (only due to interfacial drag) of the drops following 
all the trajectories traversing a cell over that time step (Crowe et al., 1977) and it is given as, 
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The meaning of the symbols appearing in the equations is given in Section 7. The turbulence 
of the air was treated by the k- model for low Reynolds flows of Lam-Bremhorst modified 
by Yap, 1987. The constants and functionsappearing in Eqs. (4) and (5) are listed in Table 1. 
Also, under the considerations done in Sec. 3.1 the equation of motion for individual drops 
in the mist and under the effects of aerodynamic drag and gravity is expressed as, 

 i
d

iiii
dd

D
i g)1()uU(uU

d
C

4
3

dt
du








  (7) 

The drag coefficient CD was assumed to vary with the particle Reynolds number, Red, 
according to the expressions given in Table 1. The trajectory of the drops was computed 
from the variation with time of the components of the position-vectors, according to, 

 i
i u

dt
dx

  (8) 

 

Constants and functions involved in the turbulence model 
C1= 1.44; C2= 1.92; Cdk= 1.0; = 1.3 

3
2 2

' 1 2
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Re  

Drag coefficient expressions 
Stokes law region, Red 2      CD = 24/Red 

Intermediate region, 2 ≤ Red ≤ 500      CD = dRe/10  

Newton’s law region, 500 ≤ Red ≤ 2105      CD = 0.44 

where 



 iid

d
uUd

Re  

Boundary conditions at nozzle exit 
Drop-phase Air-phase 

ux,k = uz,t sin(x/lx) 
uy,k = uz,t sin(y/ly) 

  2/12
k,y

2
k,x

2
t,zk,z uuuu 

0 x lx’ Ux = 0, Uy= 0, Uz= Uz,max 

lx’x  lx 

Ux= Uz,max (tan x), Uy= 0 
Uz= Uz,max(lx - x)/(lx - lx’) 
x =  (x - lx’)/(lx - lx’) 
Uz,max= (A+W)/ [2ly(lx + lx’)]  * 

0xlx )ll4/()ll(k2;U01.0k yxyx
5.1

oo
2

,maxzo   

Physical properties 
= 1.02 kg/m3; = 1.8×10-5 Pa s; d= 998 kg/m3 

Nozzle dimensions and parameters 
lx= 0.01 m; ly= 0.00325 m; lx’= 0.00585 m 

zs= 0.175 m; = 45°; = 10° 
*A is computed at local conditions: 25°C, 86 kPa. 

Table 1. Auxiliary equations, properties and dimensions 
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3.3 Boundary and initial conditions 
At the boundaries of the calculation domain shown in Fig. 3(a), Eqs. (2) through (5) 
describing the turbulent motion for the air-phase were solved imposing the following 
conditions: 
- Ambient conditions at boundaries ABCD, A'B'C'D', ABB'A' and BCC'B', specified as, 

 ambP  P   ;  k e  0    (9) 

To approach these conditions, the boundaries were located far away from the jet. 
- Symmetry conditions at the boundaries ADD'A', DCC'D', given as: 

 0
xx

k
x
U

U
jjj

i
j 












  (10) 

where j represents the index for the coordinate normal to the respective symmetry plane. 
- Non-penetration and non-slip conditions were specified at the external wall of the nozzle, 

 iU  k ε  0    (11) 

- Air velocity profiles as those shown in Fig. 3(c) were specified at the nozzle orifice, which 
corresponds to an internal boundary. Along the x-direction these profiles were uniform 
over the length lx’ of the flat hollow portion of the flanged orifice, in the rest of the orifice 
the profiles decreased to zero varying in angle from 0 deg to  deg at the edge; the 
distributions were the same throughout the whole thickness (y-)direction of the orifice. 
These velocity profiles were suggested by the geometry of the flanged orifice and are 
supported by the results presented in Section 4. The expressions describing the profiles 
are listed in Table 1, together with the expressions for the turbulence kinetic energy and 
the dissipation rate of turbulence kinetic energy at this boundary, ko and o, respectively. 

- Positions and velocities were specified to the droplets as initial conditions for the solution 
of their motion (7) and trajectory (8) equations. For doing this, a first step was to decide a 
series of criteria to distribute throughout the orifice drops of different size and velocity in 
a random fashion that reflected that the water flux profile decreases from its center to its 
edges. To do this, the orifice was simulated as a grid of ports, k, releasing drops satisfying 
the diameter distribution measured at z= zs (according with the assumption indicated in 
Section 3.1) for the particular set of nozzle operating conditions under consideration. For 
deciding the number of ports assigned to each drop size category it is important to 
establish what type of distribution to use, number or volume frequency? Figure 4 shows 
both size distributions measured for a representative set of operating conditions W and 
pa. The number frequency distribution shows that droplets smaller than 25 m account for 
a large number percentage of the drops (82.85 % of them), but that they represent only 
6.82 % of the volume of the drops in the sample. Since the number of ports that can be 
used cannot be excessively large the assignment of the ports according to the number 
frequency distribution would leave many sizes unrepresented. The volume frequency 
distribution does not present this disadvantage and was chosen to designate the number 
of ports for each size category. The size assigned to each port was done through a random 
number generator to simulate the stochastic emergence of drops with different 
characteristics from distinct sites of the orifice. The drops with volume vd,k= (dd3)k/6 
exiting the ports k with a number frequency, Nd,k, had to satisfy the water-flow rate, W, 
according to the following expression, 
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Tn

d k d k
k

W N v


   (12) 

Furthermore, based on the form of the mist footprint obtained with a patternator the water 
flow was assumed to be distributed in the orifice according to an obelisk-shaped 
distribution (Camporredondo et al., 2004), as that shown schematically in Figure 3(d). 
With the criteria given, the initial conditions for Eqs. (7) and (8) were assigned to each port 
of the nozzle orifice, such that at t = 0 the position and velocity of the drop are specified as 
follows, 

    i i i ik ku  u and x  x   (13) 

As mentioned in Sec. 3.1, the initial velocity, (ui)k, of the drops was prescribed by assuming 
that the drops exit with the terminal velocity that they reach in the mixing chamber 
(Minchaca et al., 2010). As suggested by the observed drop trajectories (Hernández et al., 
2008), according to the position assigned to the drop the angle of the velocity varied from 0 
deg to  deg in the x-direction and from 0 deg to  deg in the y-direction. A schematic 
representation of the velocity vectors of the drops is displayed in Fig. 3(d), and the 
expressions for the ux,k, uy,k and uz,k velocity components are given in Table 1. Also, the 
physical properties of the fluid, the dimensions of the orifice and the angles of expansion of 
the jet are given in the table. 
 

 
Fig. 4. Numeric and volume frequency drop size distributions measured for W= 0.58 L/s 
and pa= 279 kPa. The log-normal and Nukiyama-Tanasawa, NT, distributions fitted to the 
respective data are included  

3.4 Solution procedure 
The Eulerian and Lagrangian equations of the model were solved using the control volume 
method and the particle tracking facility implemented in Phoenics. The mesh used had 
128×25×99 control volumes to achieve mesh independent results and the number of ports 
was 100×12 in the x-y directions. The convergence criterion specified a total residual for all 
the dependent variables ≤ 10-3. 
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4. Experimental and computational results and discussion 
4.1 Drop velocity and size correlation 
As indicated in Sec. 2 the drop size and velocity measurements were done at 7 sampling 
volumes spaced along the x-direction at y= 0 and z= zs. Figure 5 shows the correlation 
between drop velocity and diameter for the set of measurements done over all the sampling 
volumes. Droplets of all sizes exhibit a wide range of velocities when they arrive to the 
measuring positions. It is noticed that as the droplet diameter decreases their velocities 
exhibit a broader range, many small drops arrive at the measuring axis with small velocities 
and this causes a weak positive correlation between droplet velocity and diameter, i.e., the 
results denote a slight trend in the velocities to be larger as the size of the drops increases. 
Correlation coefficients, for several conditions and positions, were evaluated quantitatively 
in another work and confirm the weak positive correlation appreciated for the particular 
case illustrated in the figure (Minchaca et al., 2011). 
 

 
Fig. 5. Measured and calculated velocities for drops of different sizes reaching the x-axis at 
y= 0 and z= zs. The results are for W= 0.58 L/s and pa= 279 kPa 

Figure 5 also shows results of computed velocities for drops arriving at the measuring axis. 
In agreement with the experiments, the results of the model reveal that the small drops 
exhibit a broader spectrum of velocities than the larger ones, causing the development of a 
weak positive correlation of velocity with size. Considering that the model assumes that all 
drops of each size leave the nozzle at the particular terminal velocity that they reach in the 
mixing chamber, as a result of the drag exerted by the air, the results of the figure indicate 
that the smaller droplets are more susceptible to lose their momentum while moving in the 
mist jet interacting with the air. This is evidenced by comparing the dispersion results with 
the calculated terminal velocity curve included in the figure. From the nozzle exit the drops 
follow ballistic nearly rectilinear trajectories and drops of the same size, which according to 
the model exit at the same velocity, will decelerate more when leaving from external than 
from internal positions of the nozzle orifice, so that they travel in the periphery of the jet 
interacting with the quiescent environment. This statement is supported by the experimental 
and computational results displayed in Fig. 6, which shows the variation of the normal and 
tangential velocity components of drops of different size traversing the sampling volumes 
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located at the different x-positions. The regression curves fitted to the experimental and 
computational results show an excellent agreement. The dispersion exhibited by the 
computed results displayed in Figs. 5 and 6 is smaller than the experimental due to the very 
different number of drop trajectories traversing the sampling volumes, thousands in the 
experimental case versus a few tens in the computational case. Despite of this the model is 
able to represent very well the trend in the behavior of the actual system. 
 
 

 
 

  (a)     (b)  
 

Fig. 6. Measured and computed velocity components as a function of x-position for drops of 
all sizes: (a) tangential velocity component and (b) normal velocity component. The results 
are for W= 0.58 L/s and pa= 279 kPa 

4.2 Effect of nozzle operating conditions on the velocity of the drops 
4.2.1 Effect of water flow rate at constant air inlet pressure 
In the application of air-mist nozzles for the cooling of surfaces at high temperature it is 
common to vary the water flow rate maintaining constant the air inlet pressure. This 
procedure would be equivalent to move along the curves of constant pa appearing in the 
operating diagram of Figure 2. The reason behind this is that the spray cooling intensity is 
commonly associated only to the flux of water impinging upon the hot surface, when 
actually there is another mist parameter that plays an important role and this is the velocity 
of the drops (Hernández et al., 2011). Experimentally, it has been found that the velocity of 
the drops increases with W up to a certain value, but once this value is exceeded the 
opposite effect takes place and the drop velocity decreases markedly (Minchaca et al., 2011). 
With the increase in W at constant pa the drops generated by the nozzle become larger 
(Minchaca et al., 2011) and the air flow rate, A, gets smaller as indicated by Figure 2. Both 
factors will alter the terminal velocities that the drops will reach at the nozzle exit and also 
their behavior in the free jet. 
The multivariate effects that the droplet velocity experiences when changing W at constant 
pa are complex. Therefore, it was important to examine the predictions of the CFD model in 
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this regard. Figure 7 shows experimental and computational profiles of the normal and 
tangential volume weighed mean velocity components defined as, 
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for four different water flow rates and a constant pa= 205 kPa. It is seen that both, 
experimental and computational results, indicate that the increase in W from 0.1 to 0.3 L/s 
causes an increase in the normal and tangential velocity components and that further 
increase leads to a decrease in the velocities. The drop velocities obtained with W equal to 
0.30 L/s and 0.58 L/s are considerably different, being substantially smaller for the higher 
W. This behavior could be one of the factors of why the heat transfer does not augment 
considerably when W and hence w do it (Montes et al., 2008). The computed velocities are 
somewhat larger than the experimental because the volume frequency distribution of sizes, 
chosen to establish the model, generates a greater number of large drops than small drops. 
 
 
 

 
 

Fig. 7. Measured and computed volume weighed mean velocity components as a function of 
x-position for different W and a constant pa. Normal velocity components: (a) measured, (b) 
computed. Tangential velocity components: (c) measured, (d) computed 

(a) (b) 

(c) (d) 
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4.2.2 Effect of air inlet pressure at constant water flow rate 
The computed and measured x- and z-components of the volume weighed mean velocity 
are shown in Fig. 8, for conditions involving a constant W and different pa. The agreement 
between computed and experimental results is quite reasonable and the curves show that as 
pa increases both velocity components become larger. This behavior suggests that if the 
drops were to impinge over a surface, a more intimate contact would take place as pa 
increases; this as a consequence of the higher impingement Weber numbers that would 
result. The larger tangential velocity component of the drops hints a faster renewal of the 
liquid on the surface as pa increases. In fact, heat transfer experiments have shown a 
substantial increase in the heat flux with the increase in pa at constant W (Montes et al., 2008; 
Hernández et al., 2011), suggesting that the change in the fluid dynamic behavior of the 
drops with the increase in pa favors heat transfer. The phenomena occurring during the 
impingement of dense air-mist jets with solid surfaces is being investigated. The effect of pa 
on the intensity of heat extraction could have important implications to achieve water 
savings during cooling operations. Similar to the results in Fig. 7, the computed velocities in 
Fig. 8 are somewhat larger than the experimental because the volume frequency distribution 
of sizes tends to generate a greater number of large drops than small drops.  
 
 

 
 

Fig. 8. Measured and computed volume weighed mean velocity components as a function of 
x-position for different pa and constant W. Normal velocity components: (a) measured, (b) 
computed. Tangential velocity components: (c) measured, (d) computed 

(a) (b) 

(c) (d) 
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4.3 Effect of air inlet pressure on droplet volume fraction and water impact flux 
As mentioned in Sec. 1 the mists have been classified in dense or dilute according to the 
value of the water impact density. However, little has been investigated about the actual 
mist density defined as the volume of liquid of the drops per unit volume of space; which is 
equivalent to the local liquid volume fraction, d. This parameter would give an indication 
of how critical could be to the model the assumption that the drops in the free jet do not 
interact as a consequence that they are far apart from each other. Although, the direct 
experimental measurement of this parameter is difficult the validity of the computational 
estimation of d can be tested by its relation with the water impact density. The local water 
volume fraction can be defined by the following expression, 
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and the water impact density can be evaluated as, 
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Figure 9 shows computed contour plots of d over the x-z symmetry plane of mist jets 
generated with a constant water flow rate and different air nozzle pressures. It is 
appreciated that as the air inlet pressure decreases the region close to the nozzle exhibits a 
higher liquid fraction. This behavior arises from the larger size and smaller velocities of the 
drops generated as pa decreases. For conservation of mass this last factor would imply that 
 
 
 
 

 
 
Fig. 9. Computed contour maps of d over the main symmetry plane of the mist jet for a W= 
0.50 L/s and pa of: (a) 205 kPa, (b) 257 kPa and (c) 320 kPa 

(a) (b) (c) 
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the drops travel more closely spaced as pa decreases, leading this to a higher particle 
packing. This behavior continues up to z= zs where regions of higher liquid volume fraction 
are more widely spread in the case of smaller pa. 
The predicted liquid fraction contours indicate that the increase in pa at constant W causes 
a redistribution of the liquid in the free jet that could affect the water impact density. In 
previous w measurements no effect was detected (Hernández et al., 2008). Thus, it was 
decided to refine the patternator to try to reveal if there was an influence of pa on the 
water impact density for a constant W. Figure 10 shows measured and computed water 
impact density maps for pa of 257 kPa and 320 kPa with W= 0.50 L/s. It is seen that both 
results agree very well and indicate an increase of the water impact density with the 
increase in pa, in the central region. Based on the model, this result points out that 
although at higher pa the drops tend to travel more widely spaced from each other, 
having a lower volume fraction, their higher velocities causes them to arrive more 
frequently to the collecting cells of the patternator or equivalently to the virtual 
impingement plane (in the case of the model), leading this to higher w in the central 
region of the footprint. The differences observed in the figure between experimental and 
computed results are mainly in the sizes of the footprint. This discrepancy arises because 
the model considers the nominal value of the expansion semi-angle  and a semi-angle = 
10 deg. However, the w maps and the visualization of the jets indicate that the actual 
angles were slightly larger than the nominal values. 
 
 
 
 

 
 
Fig. 10. Contour maps of w at z= zs for a W= 0.50 L/s with pa= 257 kPa: (a) experimental, (b) 
computational and with pa= 320 kPa: (c) experimental, (d) computational 

(a) 

(c) 

(b) 

(d) 
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5. Summary and conclusions 
A comprehensive experimental and computational study of the fluid dynamics of air-mist 
jets generated under conditions of interest in the cooling of surfaces found in metallurgical 
processes and in other high temperature processes was carried out. The work analyzes the 
variation of droplet velocity and water impact density as a function of droplet size and 
nozzle operating conditions. 
The rigorous determination of statistically meaningful samples of droplet size allowed to 
establish that a relatively small numeric proportion (~0.17) of ‘large´ drops (between ~25 m 
and 370 m) are responsible for transporting a large fraction of the water in the mist. The 
smaller drops transport only a small proportion of the liquid volume. This fact, which is 
typical of the different nozzles and operating conditions, suggested that the description of 
the drop sizes mainly responsible for carrying the water arriving at a given distance from 
the nozzle orifice would be crucial for formulating a 3-D turbulent Eulerian-Lagrangian 
model for simulating the dynamics of fan-shaped air-mists. Thus, the present model 
considers the volume frequency distribution of sizes, instead of the number frequency 
distribution, to prescribe the inlet ports assigned to the different sizes. This specification, 
together with those for the distributions of the velocity of the air and drops and of the water 
volume flux at the orifice, was critical in the results of the model. 
The model predicts very well the correlation between drop velocity and size, indicating that 
the finest drops tend to decelerate rapidly when traveling in the periphery of the mist. Also, 
it gives an accurate description of the influence that the variation in water flow rate at 
constant air inlet pressure, and of the variation in air inlet pressure at constant water flow 
rate, has on the velocity of the drops and on the water impact density distribution. The 
results on the fluid dynamics of free mist jets are being very useful to develop models for 
simulating the interaction of dense mists with solid surfaces. 

6. Acknowledgments 
The authors are grateful to the National Council of Science and Technology of Mexico 
(CONACYT) for financial support through grant No. 57836. JIMM wish to thank CONACYT 
for his Ph.D scholarship grant. 

7. Nomenclature 
a  Area of collector tube in patternator, m2 
A  Air flow rate at normal conditions (i.e., 0C, 101.3 kPa), NL s-1, or ambient 
  conditions (25oC, 86 kPa), L s-1 
A(x,y)  Local area in impact plane centered around coordinates x, y. 
C1, C2, Cd Constants in the turbulence model 
CD  Drag coefficient 
dd  Drop diameter, m 
fμ, f1, f2  Functions defined in Table 1 
g  Acceleration due to gravity, m s-2 
k, ko  Turbulence kinetic energy; at nozzle orifice, m2 s-2 
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lx, ly, lx’  Half length; half width nozzle orifice; half length of hollow portion of  
  nozzle orifice, m 
n  Number of drop trajectories 
np  Port number or number of ports 
Nd  Number frequency of drops, s-1 
p, P  Pressure in Ecs. (3); in Eq. (9), kPa 
pa, pw  Air-; water nozzle inlet pressures, kPa 
Red, Ret, Rez’ Reynolds number defined in Table 1 
S  Source term for momentum transfer interaction between the drops and the 
  air, m s-2 
t  Time, s 
Ts  Saturation temperature of water, °C 
Tw  Surface temperature, °C 
u  Velocity of drops, m s-1 
ux,v, uz,v   Tangential; normal volume weighed mean velocity, m s-1 
uzs  Normal drop velocity at z= zs, m s-1 
U  Velocity of the continuous phase (air), m s-1 
Uz,max  Velocity of air phase defined in Table 1 
v  Volume of water collected in bottles of patternator, L; volume, m3 
vd  Volume of drop, m3  
w  Water impact flux or water impact density, L m-2s-1 
W  Water flow rate, L s-1 
Wezs  Impinging droplet Weber number 
x  Coordinate, m 
x, y, z  Rectangular coordinates, m 
zs  Setback distance of nozzle tip from plane of interest, m 

Greek symbols 

,   Jet expansion half angles in x and y directions, deg 
d  Volume fraction of drops, dimensionless 
  Angle defined in Eq. (1) 
t  Time interval, s 
; o  Dissipation rate of turbulence kinetic energy; at nozzle orifice, m2 s-3 
μ, μt  Continuous-phase molecular; turbulent dynamic viscosity, Pa s 
  Kinematic viscosity, m2 s-1 
d  Continuous; discontinuous-phase density, kg m-3 
  Surface tension of drop phase, N m-1 
k  Laminar and turbulent Schmidt numbers for k and  

Subscripts 

amb  Ambient conditions, P = 86 kPa, T = 25 °C 
cell  Discretization cell 
i, j  Indexes for coordinate directions 
in, out  Input, output to control volume 
k  Ports or trajectories 
max  Maximum 
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t  terminal 
T  Total 
x, y, z  Coordinates directions 
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1. Introduction 

Vortical flows are one of the most fascinating topics in fluid mechanics. A particular 
difficulty of modelling such flows at high Reynolds (Re) numbers is the diversity of space 
and time scales that emerge as the flow develops.  
For compressible flows, in particular, there are additional degrees of freedom associated 
with the shocks and acoustic waves. The latter can have very different characteristic 
amplitudes and scales in comparison with the vorticity field. In case of high Re-number 
flows, the disparity of the scales becomes overwhelming and instead of Direct Numerical 
Simulations (DNS) less drastically expensive Large Eddy Simulations (LES) are used in 
which large flow scales are explicitly resolved on the grid and the small scales are modelled.  
For engineering applications, examples of unsteady vortical flows include the interaction of 
wakes and shocks with the boundary layer in a transonic turbine and vorticity dissipation 
shed due to the temporal variations in blade circulation that can have a profound loss 
influence and affect the overall performance of a turbomachine (e.g., Fritsch and Giles, 1992; 
Michelassi et al, 2003). Another example is dynamics and acoustics of high-speed jet flows 
that is affected by the jet inflow conditions such as the state of the boundary layer at the 
nozzle exit (e.g., Bogey and Bailly, 2010). The computational aspects involved in the 
modelling of such complex flows, typically, include the issues of high-resolution numerical 
schemes, boundary conditions, non-uniform grids and the choice of subgrid scale 
parameterization in case of LES modelling. 
Stepping back from this complexity to more idealised problems, two-dimensional (2D) 
vortex problems are a key object for testing different modelling strategies. Such reduced-
order systems play an important role in the understanding of full-scale flow problems as 
well as in benchmarking of computational methods. 
One example of such important idealised systems is isolated vortices, their interaction with 
acoustic waves and also nonlinear dynamics when interacting with each other. In particular, 
such vortical systems are a classical problem in the theory of sound generation and 
scattering by hydrodynamic non-uniformities (e.g., Kreichnan, 1953; Howe, 1975)  
The structure of the chapter is the following. In part I, an outline of unsteady computational 
schemes for vortical flow problems is presented. In part II, the test problem of a stationary 
inviscid vortex in a periodic box domain is considered and a few numerical solutions 
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obtained with unsteady Eulerian schemes are discussed. Part III is devoted to the sound 
scattering by a slowly decaying velocity field of a 2D vortex. In part IV, the canonical 
problem of 2D leapfrogging vortex pairs is considered and numerical solutions based on the 
Eulerian and Lagrangian approach are discussed.  

2. Numerical methods for solving unsteady flow problems sensitive to vortex 
dynamics 

Numerical dissipation and dispersion are typical drawbacks of the Eulerian computational 
schemes (e.g., Hirsch, 2007). These drawbacks are partially overcome in the Lagrangian and 
mixed Eulerian-Lagrangian methods, which describe flow advection by following fluid 
particles, rather than by considering fixed coordinates on the Eulerian grid (e.g., Dritschel et 
al, 1999). A remarkable property of the Lagrangian methods is that they are exact for linear 
advection problems with a uniform velocity field, therefore, in principle, their accuracy is 
limited only by the accuracy of solving the corresponding Ordinary Differential Equations 
(ODEs), rather than by the accuracy of solving the full Partial Differential Equations (PDEs), 
which is the case for the Eulerian schemes. This class of methods can be very efficient for 
simulations, which involve multiple contact discontinuities, e.g., in the context of multi-
phase flows and strong shock waves (e.g., Margolin and Shashkov, 2004). However, for the 
problems where vorticity plays an important role, the standard Lagrangian-type methods 
have to be adjusted, after not many Lagrangian steps, by some ad-hoc ‘repair’ or ‘contour 
surgery’ procedure. The ‘repair’ procedure can be actually viewed as a special kind of 
numerical dissipation that is needed to stabilise the numerical solution. 
For the Eulerian schemes, one of the frequently used approaches for improving the 
numerical dissipation and dispersion properties is based on using central schemes of high-
order spatial approximation. The optimized schemes employ a non-conservative form of the 
governing equations, and, typically, use large computational stencils to replicate the spectral 
properties of the linear wave propagation in the (physical) space-time domain (Lele, 1992; 
Tam and Webb, 1993; Bogey and Bailly, 2004). By construction, such methods are 
particularly efficient in handling linear wave phenomena. The optimized finite-difference 
methods were developed to overcome typical problems of spectral and pseudo-spectral 
methods by handling non-periodic boundary conditions and large flow gradients which 
they handle with the use of hyper diffusion. 
On the other hand, there is another popular approach, based on the conservation properties 
of the governing equations, that forms the basis for the so-called shock-capturing schemes. 
This is the family of methods based on the quasi-linear hyperbolic conservation laws (Roe, 
1986; Toro, 2001; LeVeque, 2002). For improving the numerical properties in this approach, 
either a second-order or higher ‘variable-extrapolation’, or ‘flux-extrapolation’ techniques 
are used, such as in Method for Upwind Scalar Conservation Laws (MUSCL, Kolgan, 1972; 
B.van Leer, 1979), for enhancing linear wave properties of the solution away from the large-
solution gradients discontinuities. The time stepping is usually treated separately from the 
spatial approximation and one popular method for time integration is multi-stage Runge-
Kutta schemes (e.g, Hirsch, 2007). 
To eliminate spurious oscillations of the solution obtained with the second- or higher-order 
schemes, in the vicinity of the discontinuities, local non-linear limiter functions are 
suggested, as, for example, in Totally Variation Diminishing (TVD) schemes (Boris et al., 
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1975). By enforcing the TVD property on the solution, the limiter functions introduce 
implicit numerical dissipation. If the numerical dissipation gets too strong, artificial anti-
diffusion terms are added to make the method less dissipative (Harten et al., 1987). The non-
oscillatory methods are very attractive for computing flows with shocks. For weakly non-
linear flow problems, however, the shock-capturing TVD schemes tend to introduce too 
much dissipation and for vortical flows, especially in acoustics sensitive applications, the 
limiters are recommended to switch off (e.g., Colonius and Lele, 2004), i.e., selectively use 
the non-oscillatory methods only for strong discontinuities.  
One notable exception is the so-called Compact Accurately Adjusting high-Resolution 
Technique (CABARET) (Karabasov and Goloviznin, 2009). CABARET is the extension of 
Upwind Leapfrog (UL) methods (Iserlis, 1986; Roe, 1998; Kim, 2004; Tran and Scheurer, 
2002) to non-oscillatory conservative schemes on staggered grids with preserving low 
dissipative and low dispersive properties. CABARET is an explicit conservative finite-
difference scheme with second-order approximation in space and time and it is found very 
efficient in a number of Computational Fluid Dynamics (CFD) problems, (Karabasov and 
Goloviznin, 2007; Karabasov et al, 2009). In comparison to many CFD methods, CABARET 
has a very compact stencil which for linear advection takes only one computational cell in 
space and time. The compactness of the computational stencil results in the ease of handling 
boundary conditions and the reduction of CPU cost. For non-linear flows, CABARET uses a 
low-dissipative conservative correction method directly based on the maximum principle. 
For collocated-grid schemes, the mainstream method of reducing numerical dissipation is to 
upgrade them to a higher order (typically, by extending its computational stencil). There is a 
broad range of recommendations on the subject, starting from Essentially or Weighted 
Essentially Non-Oscillatory schemes (ENO and WENO) (Liu et al, 1994) to Discontinuous 
Galerkin methods (Cockburn and Shu, 2001). All these methods show significant 
improvements in terms of preserving the linear flow properties, if compared with the 
conventional second-order schemes. 
For illustration of numerical properties of different Eulerian schemes, Fig 1 shows the 
comparison of phase speed error and the non-dimensional group speed as a function of grid 
resolution for several semi-discrete central finite differences. E2, E4, E6 denote standard central 
differences of the second, fourth and sixth-order, respectively, DRP denotes the fourth order 
Dispersion Relation Preserving scheme by Tam and Webb; and LUI stands for the sixth order 
pentadiagonal compact scheme of Pade-type. CABARETx stands for the CABARET dispersion 
characteristic at various Courant number CFL=x. All solutions are shown as a function of the 
grid refinement parameter, N=/(k·h) and the non-dimensional wavenumber, k·h, 
respectively. Note that the solutions for the second-order discretization are typical of the ‘low-
order’ shock-capturing methods, e.g., the Roe MUSCL scheme, with the limiter switched off. 
Higher-order central schemes of the 4th and the 6th order are analogues to the high-order 
shock-capturing methods, such as WENO, in the smooth solution region. The results for two 
pseudo-spectral optimised dispersion schemes are also shown. 
Note that the dispersion errors of semi-discrete schemes correspond to exact integration in 
time, which neglects the possible increase of dispersion error due to inaccuracies in time 
marching. For most Courant numbers and for a wide range of grid resolution (7-20 points 
per wavelength) the dispersion error of the CABARET scheme remains below that of the 
conventional and optimised fourth-order central finite differences and close to that of the 
six-order central schemes. Away from the optimal Courant number range (e.g., for 
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CFL=0.1), the CABARET dispersion error is similar to that of the conventional fourth-order 
scheme. Fig1b shows that the numerical group speed of central finite-difference schemes on 
coarse grids is negative that leads to spurious wave reflection and sets the limit to the 
minimum grid resolution if numerical backscatter is to be avoided (Colonius and Lele, 2004). 
In comparison with the central schemes, the CABARET group speed remains in the physically 
correct direction for all wavenumbers, i.e., the non-physical backscatter is always absent. 
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Fig. 1. Linear wave properties of several spatial finite-difference schemes: (a) phase errors 
and (b) normalised group speeds. 

3. Steady vortex solution in a finite domain 

Let’s first consider a steady problem of isolated compressible Gaussian vortex in a square 
periodic domain. The vortex is specified in the centre of the box domain, as a perturbation to 
a uniform background flow with zero mean velocity (ρ∞,u∞,p∞)=(1,0,1): 
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To simplify the treatment of external boundary conditions, the box size is set 20 times as 
large as the vortex radius, L so that the vortex induced velocity vanishes at the boundaries. 
The vortex field corresponds to a steady rotation that is a stable solution of the governing 
compressible Euler equations (e.g., Colonius at al, 1994). The characteristic space scale of the 
problem is the vortex core radius L. It is also useful to introduce the time scale based on the 
vortex circulation time 2 / 1.047T L   . 
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The analytical solution of the problem is trivial: at all time moments the solution remains 
equal to the initial conditions. From the viewpoint of unsteady computational schemes, 
however, preserving the vortex solution on a fixed Eulerian grid that is not specifically 
tailored to the initial vortex shape tends to be a challenge. 
To illustrate the point we consider numerical solutions of this problem obtained with two 
high-resolution Eulerian methods mentioned in the introduction. These are the Roe-MUSCL 
scheme with and without TVD limiter (MinMod) and the CABARET method. The former 
method is based on the third-order MUSCL variable extrapolation in characteristic variables 
and the third order Runge-Kutta scheme for in time. The latter is based on a staggered 
space-time stencil and is formally second order. Note that the MinMod limiter used with the 
Roe MUSCL scheme is more robust for vortical flow computations in comparison with more 
‘compressive’ limiters, e.g., SuperBee, that are better tailored for 1-D shock-tube problems. 
This is because the former is less subjected to the ‘stair-casing’ artefacts in smooth solution 
regions (e.g., see Hirsch, 2007). The Euler equations with the initial conditions (1) are solved 
on several uniform Cartesian grids: (30x30), (60x60), (120x120) and (240x240) cells. These 
correspond to the grid density of 1.5, 3, 6 and 12 grid spacings per the vortex core radius, 
respectively. Figs 2 show the grid convergence of the vorticity solution obtained with the 
CABARET method at control time t=100. The shape and the peak of the vortex is well 
preserved on all grids including the coarsest one. For qualitative examination, the kinetic 
energy integral has been computed

,

( ) i i
x y

K t u u , as a fraction of its initial value (0)K . The 

relative error ( ) 1 ( ) / (0)t K t K    of this nonlinear problem at t =100 shows approximately a 

linear decay with the grid size: it is 0.011 for grid (30x30), 0.0061 for grid (60x60), and 0.003 for 
grid (120x120). For the Roe-MUSCL scheme, the solution of the vortex problem is much more 
challenging. The activation of the TVD limiter leads to a notable solution smearing, which 
builds up with time, and which affects even the solution on the fine grid (120x120) (fig.3a). It 
is, therefore, tempting to deactivate the TVD limiter since in the case considered there are no 
shocks involved. Without the limiter, the Roe-MUSCL scheme initially preserves the vortex 
shape well (as in fig.3b). However, after a few vortex circulation times, spurious oscillations 
that correspond to the nonphysical propagation direction of the short scales (cf. fig.1b) grow 
until they completely contaminate the vortex solution (fig3c). 
 

 
 

                              (a)    (b)       (c) 

Fig. 2. Steady compressible Gaussian vortex in a periodic box domain: vorticity levels of the 
CABARET solution at time t=100 on (a) grid  (30x30),  (b) grid (60x60) , and (c) grid (120x120). 
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                             (a)       (b)        (c) 

Fig. 3. Steady compressible Gaussian vortex in a periodic box domain: vorticity levels of the 
Roe-MUSCL solution on grid (240x240) cells with (a) MinMod limiter at time t=100, (b) 
MinMod limiter at time t=4, and (c) with the limiter deactivated at time t=5. 

4. Sound scattering by a steady vortex 

 We next consider an isolated viscous-core vortex from Colonius at al (1994) that 
corresponds to a slowly decaying velocity field of constant circulation 0   
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where c  is acoustic far-field sound and L is the vortex core radius. The density and pressure 
field satisfy the usual isentropic relation and the steady tangential momentum equation: 
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The vortex is specified in the centre of an open square Cartesian domain, three sides of 
which are open boundaries and the forth one corresponds to an incident acoustic wave that 
is monochromatic with frequency f. and normal to the boundary. The incident wave 
boundary condition is imposed at distance R=10L from the vortex centre which is offset 
from the centre of the square computational box domain of linear size 40L. 
The velocity perturbations of the incident acoustic wave are several orders of magnitude as 
small as the maximum velocity of the vortex, u'=1.e-5  max

v . The problem has two length 

and time scales associated with the vortex circulation and the acoustic wave. The case of 
long acoustic wavelength =2.5L is considered first. 
The solution of the acoustic wave scattered by the vortex is sought in the form of the 
scattered wave component 

 
( ) ( )' ,    ( )a vp p p p p p p        (4) 

where p is the full pressure field obtained as the solution of the sound wave interaction with 
the vortex, ( )ap  is the solution that corresponds to the acoustic wave propagating in the free 
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space without any hydrodynamic perturbation, ( )vp  is the steady solution vortex without 
any incoming acoustic wave, and p  is the pressure at the far field. Note, that from the 
numerical implementation viewpoint it is preferable to compute the scattered solution in 
form (5) instead of using 0( )tp p p     in order to account for a small systematic 
approximation error of the round vortex on a rectilinear Cartesian grid. 
Colonius et al (1994) obtain the benchmark solution to this problem by using the 6-th order 
Pade-type compact finite-difference scheme in space and 6-th order Runge-Kutta integration 
in time with the grid density of 7-8 grid points per vortex radius. The reference solution 
corresponds to the Navier-Stokes equations at Reynolds number 105 integrated over four 
acoustic wave time periods in the open computational domain with well-tailored numerical 
boundary conditions to minimise numerical reflections from the boundaries. 
It is interesting to compare the reference solution with the results obtained with the 
CABARET scheme and the third-order Roe-MUSCL-Runge-Kutta method from the previous 
section. To reduce the numerical dissipation error of the latter, the MinMod limiter has been 
deactivated. For CABARET, the complete formulation including the nonlinear flux 
correction is used. For the sake of comparison, the vortex with core Mach number 

max 0.25M   is considered. Characteristic-type nonreflecting boundary conditions and grid 
stretching close to the open boundaries are used to minimise artificial reflections. 
Fig.4 shows the computational problem configuration and the distribution of the root-
means-square (r.m.s.) of the scattered pressure fluctuations for the CABARET solution, 
where the vortex centre corresponds to the origin of the system of coordinates. 
 
 

   

 
 (a)    (b) 

Fig. 4. Sound wave scattering by a non-zero circulation vortex of M=0.25: (a) problem 
configuration, (b) computed r.m.s of the scattered pressure field of the CABARET solution 
on coarse grid of 2.5 cells per vortex core radius. 

The main emphasis of this subsection is the effect of non-uniform hydrodynamic flow on 
sound scattering, hence, the numerical solutions for the scattered pressure field intensity 
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. . .( ') ( , )r m s p f R   (acoustic pressure directivity) at a large distance from the vortex centre 
R=10L are considered. Figs.5 show the acoustic pressure directivity . . .( ') ( , )r m s p f R   with 
respect to the polar angle defined anti-clock-wise from the positive x-direction. The 
comparison of the CABARET solution with the reference solution of Colonius et al (1994) is 
shown in Fig.5a. To monitor the grid convergence, the Euler equations are solved on a 
Cartesian grid whose resolution is gradually increasing: (100,100), (200х200) и (400х400) 
cells (2.5, 5 and 10 grid points per vortex radius, respectively). For CABARET, the r.m.s. 
distributions on the two finer grids virtually coincide. 
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Fig. 5. Sound wave scattering by a vortex: (а) grid convergence of the scattered pressure 
r.m.s. field of the CABARET solution, (b) comparison of the fine-grid CABARET results with 
the reference solution of Colonius et al (1994), (c) comparison of the fine-grid 3rd order 
Roe/MUSCL results with the reference solution of Colonius et al (1994). 
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For the Roe-MUSCL scheme, the comparison with the reference solution on the finest grid 
(400x400) is shown in Fig.5c. In comparison to the CABARET results (fig.5a), for the Roe-
MUSCL scheme there is some 30% overprediction of the peak sound directivity that is 
associated with numerical dispersion. Clearly, the acoustic peak corresponds to the 
downstream vortex direction where the sound waves spend more time inside the strongest 
vortex-induced hydrodynamic field and which direction is more sensitive to the linear 
dispersion error of the numerical scheme. 
The next case considered is the high frequency acoustic wave imposed as the inflow 
boundary condition. It is well known (e.g., Kinsler and Frey, 2000) that in the high-
frequency limit  << L the Euler equations can be reduced to the ray-theory equations. 
The latter, for example, describe the effect of focusing and defocusing of acoustic rays as 
they pass through a non-uniform medium. In particular, the focusing of acoustic rays 
creates caustics which loci can be found from the solution of eikonal equation (Georges, 
1972). On the other hand, caustic locations correspond to the most intense root-mean-
square (r.m.s) fluctuations of the pressure field that can be obtained directly from solving 
the Euler equations. 
To illustrate this numerically, let’s consider the incident acoustic wave at a high-frequency 
wavenumber  =0.076 L and solve the Euler equations with the CABARET method. For 
this calculation, the computational grid with the resolution of 7-8 cells per acoustic 
wavelength that corresponds to (1000x1200) grid cell points is used. Fig.6a shows the 
scattered pressure r.m.s. field obtained from the Euler solution, where the loci of the 
caustics bifurcating into two branches, as obtained in Colonius at al (1994), are shown. 
The centre of the vortex corresponds to the origin of the coordinate system. The caustics 
branches outline the acoustic interference zone that develops behind the vortex. Fig.6b 
shows the pressure r.m.s. directivity, . . .( ') ( , )r m s p f R   of the computed solution at 

distance R=L from the vortex centre. Two grid resolutions are considered, 7 and 14 grid 
cells per acoustic wavelength. The polar angle variation corresponds to the top half of the 
computational domain which intersects one of the caustics bifurcation point at ~ 700 
relative to the incident wave direction. 
For the solution grid sensitivity study, the scattered pressure r.m.s. solutions are 
computed with two grid densities, as shown in Figs 6c,d. It can be seen the main features 
such as the caustic point location and the peak amplitudes are well captured on both 
grids. The scattered acoustic pressure solution component is then further used to compute 
the trajectories of sound rays. The trajectories are defined as the normal to the scattered 
pressure r.m.s. fronts. In particular, from this vector field, the maximum angle of the 
acoustic ray deflected by the vortex can be compared with the ray-tracing solution. 
According to the ray theory, the maximum deflection angle scales linearly with the vortex 
Mach number. 
Fig. 7 shows the maximum deflection angles obtained from the Euler calculation (Euler) and 
the reference values obtained from the ray-tracing solutions. All solutions are in a good 
agreement and follow the linear trend expected. In particular, the Euler solution almost 
coincides with the eikonal solution of Tucker and Karabasov (2009) that corresponds to the 
same computational domain size. The slight disagreement with the other ray-tracing 
solutions is likely to be caused by the differences in the domain size, i.e., the proximity of 
inflow boundary conditions, as discussed by Colonius et al, 1994. 
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(a)     (b) 

 

 
(c)     (d) 

 
 
 

Fig. 6. Euler solution of the sound scattering by a vortex at high frequency: (а) pressure 
r.m.s. field where the loci of caustic branches are shown with the open symbols, (b) pressure 
r.m.s. directivity in the top half of the domain for the grid resolutions 7 and 14 cell per 
acoustic wavelength (7 ppw and 14 ppw); the scattered pressure r.m.s. for vortex core Mach 
number Mmax=0.295 with the grid density of (c) 7 cells per acoustic wavelength and (d) 14 
cells per acoustic wavelength. 
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(a)     (b) 

Fig. 7. Extracting sound ray trajectories from the Euler solution (a) for vortex Mach number 
0.55 and (b) comparing the extracted maximum ray deflection angle as a function of various 
vortex Mach numbers with several ray-tracing solutions. 

5. Dynamics of counter-rotating vortices 

As the final example, we consider the test problem of interacting counter-rotating vortices that 
involves both their nonlinear dynamics and, as a by-product, sound generation. For small 
viscosity, the direct simulation of vortex dynamics and acoustics by solving the compressible 
Navier-Stokes equations on a Eulerian grid is a challenging problem because of the thin 
vorticity filaments that are generated as the process evolves in time. These are difficult to 
capture because of numerical dissipation-dispersion problems mentioned in the introduction. 
In the literature, examples of flow simulations have Reynolds number, as defined based on the 
velocity circulation, in the range of 1000-4000 (e.g., Inoue, 2002). Eldridge (2007) manages to 
accurately compute the problem of dynamics and acoustics of counter-rotating vortex pairs at 
a high Reynolds number, Re=10000 with the use of a Lagrangian vortex particle method. In the 
latter, the governing fluid flow equations are solved in a non-conservative form and the 
advected vortex solution is regularly reinitialised on a Eulerian grid to reduce the complexity 
of thin vorticity filaments and stabilise the solution. In the present subsection, the problem of 
counter-rotating vortices is solved on a fixed Eulerian grid for the range of Reynolds numbers, 
Re=5000-10000 with the conservative Navier-Stokes CABARET method.  
Fig. 8 shows the problem setup. Four viscous-core counter-rotating vortices are initiated in 
an open domain. Each of the vortices has a constant velocity circulation at infinity , 0    
and a Gaussian distribution of the vorticity with the core radius 0r  
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where 0.24 a     that corresponds to the vortex core Mach number 0 0.3M   and 
10

03x y r      is half-distance between the adjacent vortex centres. In non-dimensional 

variables, the flow parameters at infinity are taken to be 1, 1p     and 0.2  . The 
initial location of the centre of mass of the system corresponds to x=0. 
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Fig. 8. Problem configuration for two counter-rotating vortex pairs. 

The vortex system undergoes a jittering motion with one vortex pair sleeping through the 
other and taking turns. The centre of mass travels at a positive subsonic speed, which 
corresponds to the right horizontal direction in Fig.8. After each sleep-through, the distance 
between the vortices decreases until they finally coalesce and continue the movement as a 
single core. By using a point-vortex approximation with neglecting viscous effects, the 
dynamics of the vortex system before coalescence can be described by the classical analytical 
solution of Hicks (1922). This solution gives the following expressions for the centre mass 

velocity U  and the slip through period pT  of the vortex system: 
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where k=1/[1+(y / x)2]=0.5 and ( ), ( )K k E k  are the complete elliptic integrals of the first and 

second kind. For the specified parameters of the model, the centre mass velocity and slip-
through period are  

 
254.46 0.1437

12.21,  0.1282pT U





   


. (7) 

The velocity of the centre mass corresponds to the Mach number 0.1083M  . 
Because of the problem symmetry with regard to axis y=0, one-half of the computational 
domain is considered with the symmetry boundary condition. The problem is solved in the 
inertial frame of reference which velocity with regard to the absolute frame equals the 

velocity of the centre of mass,U . The latter is available from the analytical point-vortex 
solution. Because of this choice the centre of mass is approximately stationary in the 
reference coordinate system. The latter is helpful for minimising the size of the 
computational domain. 
The computational domain of size 440 x 220 (axially times vertically) is covered by a 
Cartesian grid that has a uniform grid spacing in the central block (60 x 30). Exponential 
grid stretching is applied near the outer boundaries to reduce numerical reflections (Fig.9). 
Three grid resolutions are considered: 6, 9 and 12 grid cells per vortex core radius. 
Initial conditions in conservation variables are computed in the following way. By 
combining the initial vorticity distribution (5) with the solenoidal velocity field condition, 
the velocity field is computed from solving the Laplace equation for velocity potential. The 
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resulting velocity field is substituted to the momentum equations in conservation variables 
that are then integrated numerically with the use of the isentropic flow relation between 
pressure and density. 
 

 
(a)     (b) 

Fig. 9. Computational grid: (a) full domain view and (b) zoom in the beginning of the grid 
stretching zone. 

Fig.10 shows the time evolution of vorticty field of the system as the vortex pairs sleep 
through each other. The grid density is 6 grid cells per vortex radius and the Reynolds 
number of the CABARET simulation is 9400. This particular Reynolds number is chosen as 
the best match for the reference Lagrangian particle solution of Eldridge (2007) that 
corresponded Re=10000. The 5% difference in the Reynolds numbers may be attributed to 
the differences in numerical approximation of viscous terms in the momentum and energy 
equations in the conservative CABARET and the non-conservative vortex particle method. 
For Re=9400, the vortex pairs merge after 4 sleep-through events. The sleep-though events 
correspond to Fig10(c),(d),(e),(f). For Re=5000, the coalescence happens earlier in comparison 
with the Re=9400 case: for the lower Re-number the vortices coalesce already after 3 sleep-
throughs. This change can be compared with results for the fully inviscid follow case 
calculation that was conducted with the same CABARET Euler method. In the latter case the 
vortices manage to undergo 6 sleep-through events before coalescence. The capability of the 
CABARET model to capture the qualitative differences between the Re=9400 and the fully 
inviscid solution is noted as a good indication of how low-dissipative the method is. 
To zoom into the flow details, Fig.11 compares instantaneous vorticity contours obtained 
from the CABARET solution at two grid resolutions, 6 and 12 cells per core radius, with the 
reference Lagrangian particle solution from Eldridge (2007) at one time moment. This time 
moment corresponds to the last vortex sleep-through before the coalescence. At this time the 
vortices are very close and strongly interact with each other through fine vorticity filaments. 
For all three solutions, the same contour levels are plotted that show a good agreement 
down to a small detail. 
It is also interesting to compare the 2D solution computed with the results of the vortical 
structure visualization obtained experimentally by Bricteux et al 2011 for a 3D high-
Reynolds number jet. In this experimental work a moving window technique is used in the 
framework of Particle Image Velocimetry (PIV) method to visualise vortex paring in the jet 
shear layer. Fig.12 shows the results of the visualisation in the jet symmetry plane that 
appear qualitatively very similar to the results of the 2D simulation (cf. fig.10a,b,d,g). 
For a quantitative comparison, the centre mass velocity of the vortex system and the values 
of first few vortex slip-through periods are compared with the reference analytical solution 
for point vortices in inviscid flow. 
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(а)    (b)   (c) 

 
(d)     (e)   (f) 

 
 (g)    (h) 

 

Fig. 10. Vorticity distribution of leapfrogging vortices at several consecutive time moments: 
/a t   0 (a), 18 (b), 36 (c), 54 (d), 72 (e), 90 (f), 108 (g), 120 (h). 

 

 
(a)   (b)   (c) 

 

Fig. 11. Vorticity distribution of the leapfrogging vortex pairs at / 90a t    for (a) 

CABARET solution with the grid density of 6 cells per vortex core radius, (b) CABARET 
solution on the grid with 12 cells per vortex core radius, and (c) the reference vortex particle 
method solution from Eldridge (2007). 

 

 
Fig. 12. PIV of vorticity distribution of leapfrogging vortex rings in the symmetry plane of a 
high Reynolds number jet obtained with a moving window technique by Bricteux et al 2011.  
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Grid spacing, h 0 /6r  0 /9r  0 /12r  

U  0.1271 0.1277 0.1279 

 
1pT

 
10.85 10.9 10.9 

 
2pT

 
7.9 8.1 8.2 

Table 1. Integral characteristics of the vortex system as obtained from the numerical solution 

Here (Tp)1 is the time period between the first and the second vortex sleep-through and (Tp)2  
is the time period before the second and the third sleep-through. The agreement for the 
meanflow velocity between the point-vortex theory value (0.1282) and the numerical values 
on 3 different grids is within 1%. For the sleep-through period, the values obtained on 
different grids are converged within 0.5%. The numerically predicted time period, however, 
is 10-15% shorter in comparison with the point-vortex theory (12.21). This discrepancy is 
within the order of accuracy the point-vortex model, (r0/)2=0.16 and thus characterises how 
non-compact the viscous vortex core is in comparison with the distance between the 
adjacent vortex centres. 
In addition to the near-filed, the far-field pressure field has been computed on a circle 
control surface at distance of 20  from the vortex centre of vortices. The control surface is 
located in the same reference system as the centre of mass that moves at a small subsonic 
speed, 0.1083M   with respect to the absolute frame. Fig.13 shows the pressure signals 

obtained at the control points corresponding to 300 and 900 angle to the flow direction for 
Re=5000 and 9400 on the grids of different resolution. 
The pressure fluctuations are defined with the reference to the pressure field value at 
infinity, 1p  . The peaks of the pressure signatures correspond to the vortex sleep-

through events and the number of the peaks corresponds to the total number of vortex 
sleep-throughs, respectively. The phase of intense vortex interaction during the vortex 
pairing is followed by a “calming” period that corresponds to the vortex roll-up after the 
coalescence. In comparison with the pre-coalescence time history that is dominated by large-
time scales the post-coalescence signal is dominated by small-time-scale events. 
For the higher Re-number case, the amplitude of the last acoustic “burst” that corresponds 
to / ~ 110a t   has some 20% higher amplitude in comparison with other peaks. This loud 
acoustic event corresponds to the last vortex sleep-through, which takes place at 

/ ~ 90a t   and which is well-captured on the grids of different resolution. After the vortex 
coalescence, the increase of Reynolds number from 5000 to 9400 also leads to a notable 
prolongation of small-scale acoustic fluctuations in the post-coalescence phase. These effects 
may be associated with the small spatial structures that are generated shortly before the 
vortices coalesce (e.g., fig.10f,g) and which are more sensitive to viscous dissipation. 
For the pre-coalescence period of vortex evolution, the numerical solutions that correspond 
to the grids of different resolution are converged within 1-2% for both Reynolds numbers. 
For the post-coalescence time history, the grid convergence for the high Reynolds-number 
case, Re=9400, slows down in comparison with the Re=5000 case. For both Re-number cases, 
however, the CABARET solution on the grid resolution 12 cells per vortex radius appears 
adequate to capture the fine pressure field fluctuations well. 
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(a)     (b) 

 

 
(c)     (d) 

 

Fig. 13. Acoustic pressure signals at different observer angles to the flow: 300 (a),(c) and 900 
(b),(d) for Re=5000 (a),(b) and Re=9400 (c),(d). 

6. Conclusion 

The computational of compressible vortical flows is challenging because of the multi-scale 
phenomena involved. Computational approaches and numerical methods for the solution of 
compressible vortical flow problems have been discussed. In particular, the key elements of 
a successful computational method have been outlined that include low numerical 
dissipation and low dispersion, as well as the good vortex preservation property. For the 
sake of illustration, several two-dimensional problems are considered that typically present 
a challenge for conventional Eulerian numerical schemes. The problems include the 
preservation of steady vortex in a box domain, acoustic wave scattering by a vortex field 
and the dynamics and acoustics of counter-rotating vortices pairs. For these problems, 
several computational solutions are presented and discussed, including those obtained with 
the CABARET scheme developed by the authors. Analytical and reference solutions are 
provided where applicable. All test problems considered are promoted as the benchmark 
problems for new Computational Fluid Dynamics codes that are to be used in application 
for hydrodynamics and acoustics of vortex resolving simulations.  
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1. Introduction 

Fluidization refers to the contact between a bed of solids and a flow of fluid. As a result, the 
solid particles are transformed into a fluid-like behavior that can be used for different 
purposes. The fluidized bed reactor is one of the most important technologies for gas-solid 
heterogeneous operations chemical or petrochemical, considering catalytic or non catalytic 
processes (Kunii and Levenspiel 1991). The most important industrial applications include 
catalytic cracking, coal combustion and biomass combustion. One of the most relevant type 
of fluidized bed reactor is the ascendant flow reactor, which is also known as riser. The riser 
reactors consist of a tubular column in which both solid and gas flow upwards. The first 
fluidized bed gas generator was developed in Germany by Fritz Winkler in the 1920s. Later 
in the 1930s, the american petroleum industry started developing the fluidized bed 
technology for oil feedstock catalytic cracking, becoming the primary technology for such 
applications (Tavoulareas 1991). 
Inside the riser reactor, solid particles have a wide range of residence time, which is a 
disadvantage that reduces the overall conversion and the selectivity of the chemical reactions. 
For that reason it has recently grown the interest in a new type of gas-solid circulating reactor 
known as downer. In this reactor the gas and the solid flow cocurrently downward, creating 
hydrodynamic features comparable to a plug flow reactor and allowing a better control over 
the conversion, the selectivity and the catalyst deactivation. The concept of downer reactor 
gas-solid appeared in the 1980s, with the first studies on the fluid dynamics of gas-solid 
suspensions (Kim and Seader 1983) and with the first downer reactors for patents developed 
by Texaco for the FCC process (Gross Benjamin and Ramage Michael P 1981; Niccum Phillip 
K and Bunn Jr Dorrance P 1983). In these studies it is observed that in the downer reactor has a 
uniform distribution of two-phase flow along the reactor, also observed that the contact time is 
very low, achieving a 20% decrease in the amounts of coke produced during the FCC process. 
Applications, differences, advantages and disadvantages to these types of fluidized bed 
reactors can be found in various publications (Ancheyta 2010; Gonzalez, 2008; Yi Cheng et 
al. 2008; Crowe 2005; Wen-ching Yang 2003; Grace 1997; Gidaspow 1994; Geldart 1986) 

2. Fluidization regimes and particle classification 

Fluidization occurs when a gas or liquid is forced to flow vertically through a bed of 
particles at such a rate that the buoyed weight of the particles is completely supported by 
the drag force imposed by the fluid. 
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2.1 Flow regimes in fluidized beds 
As the superficial gas velocity, U, is increased stepwise beyond the minimum fluidization 
velocity, it is observed different types of flow regimes. The principal ones are schematically 
shown in Figure 1. The flow regimes are listed by increasing value of U as follows: 
 Bubble-free bed expansion 
 Bubbling fluidization 
 Slug flow 
 Turbulent fluidization 
 Fast fluidization and dense suspension upflow 
 
 
 
 

 
 
 

Fig. 1. Flow regimes of gas–solid fluidization. 

The bubbling regime is one of the most studied flow regimes in gas-solid fluidization. 
Bubbles coalesce and break-up as fluid flow is increased. Finally, the bubbles become 
large enough to occupy a substantial fraction of the cross-section of the small diameter 
columns (Vejahati 2006). These large bubbles are called slug, as shown in the third column 
of Figure 1. 

2.2 Particle classification 
The behavior of solids fluidized by gases fall into four clearly recognizable groups, 
characterized by density difference (ρs – ρf) and mean particle size. The features of the 
groups are: powders in group A exhibit dense phase expansion after minimum fluidization 
and prior to the commencement of bubbling; those in group B bubble at the minimum 
fluidization velocity; those in group C are difficult to fluidize at all and those in group D can 
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form stable spouted beds (Geldart 1973). Desirable properties of particles and gas for 
fluidized bed are delineated in Table 1. 
 
 

Property Desirable Range 

Particle Properties 

Mean diameter 50 μm to 1.6 mm 

Size distribution Neither too narrow or too broad, e.g., 90th to 10th decile ratio 5 to 25 

Density Wide range of values possible, but uniform from particle to particle 

Shape Rounded and with length to thickness ration no larger than ~3 

Surface roughness Smooth 

Surface stickiness Avoid sticky surfaces 

Attrition resistance Usually strong as possible 

Hardness Avoid resilience, but also excessive hardness 

Gas Properties 

Density No restriction, but higher value improves properties 

Viscosity No restriction 

Relative humidity Typically 10 to 90% 

Table 1. Desirable properties of particles and gases for Gas-Solid fluidization (Jesse Zhu et 
al. 2005) 

3. Experimental measurement techniques 

For better understanding of these phenomena and to facilitate the solution of mathematical 
models is necessary to make an analysis of experimental data. This experimental analysis 
requires specialized measurement techniques are able to explain the flow field must also be 
automated to minimize human involvement in the process of collecting data. 
The measurement techniques, to capture the important fluids dynamic behavior of the two-
phase flow, can be classified as non-intrusive (NMT) and intrusive (IMT) techniques. The 
intrusive techniques are generally probes used to study local basic flow phenomena. Some 
of these are intended only as research instruments. The most common parameters that are 
measured with such probes are solids mass flows, radial and axial solids concentration, 
solids velocities, and distribution. 
The particles can be deposited in the measuring device reducing its performance or causing 
malfunction. Besides this, the flow area reduction makes of the intrusive devices not the best 
solution. Non-intrusive techniques to characterize the flow within a fluidized bed are more 
desirable because it does not disturb the flow behavior. In the Table 2 and Table 3 
classification techniques are included and recent successes have been achieved. 
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NMT  Ref for more details 

Laser 
Doppler 

Anemometry 
(LDA) 

LDA is a technology used to measure 
velocities of small particles in flows. The 
technique is based on the measurement of 
laser light scattered by particles that pass 
through a series of interference fringes (a 
pattern of light and dark surfaces). The 
scattered laser light oscillates with a specific 
frequency that is related to the velocity of the 
particles. 

(C.H. Ibsen, T. Solberg, 
and B.H. Hjertager 2001; 
Claus H. Ibsen et al. 2002; 
Kuan, W. Yang, and 
Schwarz 2007; Lu, Glass, 
and Easson 2009; Vidar 
Mathiesen et al. 1999; 
Werther, Hage, and 
Rudnick 1996) 

X-ray Radiographic techniques based either based 
on electromagnetic radiation such as X and y 
rays. The transmission of X-rays or -rays 
through a heterogeneous medium is 
accompanied by attenuation of the incident 
radiation, and the measurement of this 
attenuation provides a measure of the line 
integral of the local mass density distribution 
along the path traversed by the beam 

(Franka and Heindel 2009; 
Newton, Fiorentino, and 
Smith 2001; Petritsch, 
Reinecke, and Mewes 
2000; Tapp et al. 2003; C. 
Wu et al. 2008; Heindel, 
Gray, and Jensen 2008) 

-ray 

(Du, Warsito, and Fan 
2005; Kumar, Moslemian, 
and Milorad P. Dudukovic 
1995; Tan et al. 2007; 
Thatte et al. 2004; 
Veluswamy et al. 2011; H. 
G Wang et al. 2008) 

Radioactive 
Particle 

Tracking 
(RPT) 

Technique to measure velocity field and 
turbulent parameters of multiphase flow. 
This is based on the principle of tracking the 
motion of a single tracer particle as a marker 
of the solids phase. The tracer particle 
contains a radioactive element emitting γ-
rays. This radiation is received by an 
ensemble of specific detector.  

(Muthanna Al-Dahhan et 
al. 2005; S. Bhusarapu, 
M.H. Al-Dahhan, and 
Duduković 2006; Fraguío 
et al. 2009; Khanna et al. 
2008; Larachi et al.; 
Vaishali et al. 2007) 

Particle 
Image 

Velocimetry 
(PIV) 

PIV measures whole velocity fields by taking 
two images shortly after each other and 
calculating the distance individual particles 
travelled within this time. The displacement 
of the particle images is measured in the 
plane of the image and used to determine the 
displacement of the particles  

(van Buijtenen et al. 2011; 
Fu et al. 2011; He et al. 
2009; Hernández-Jiménez 
et al.; Kashyap and 
Gidaspow 2011; Laverman 
et al. 2008; Sathe et al. 
2010) 

 

 
Table 2. Non-intrusive measurement techniques. 
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IMT  References 

Pitot Tube 
Mechanical method based on 
determination of momentum by means 
of differential pressure measurements 

(Al-Hasan and Al-Qodah 2007; 
Bader, R., Findlay, J. and 
Knowlton, TM 1988; R.-C. 
Wang and Han 1999) 

Fiber Optic 
Probe 

This technique is commonly used as 
effective tools to measure the local 
porosity in fluidized beds. 

(Fischer, Peglow, and Tsotsas 
2011; Link et al. 2009; Meggitt 
2010; Zhengyang Wang et al. 
2009; Ye, Qi, and J. Zhu 2009; 
Zhou et al. 2010; Haiyan Zhu et 
al. 2008) 

Capacitance 
Probe 

This technique is used to measure the 
local dielectric constant of the gas-solid 
suspension, which is linked to the local 
volume fraction of solids 

(A. Collin, K.-E. Wirth, and 
Stroeder 2009; Anne Collin, 
Karl‐Ernst Wirth, and Ströder 
2008; Demori et al. 2010; Guo 
and Werther 2008; Vogt et al. 
2005; Wiesendorf 2000) 

Table 3. Intrusive measurement techniques. 

4. Computational fluid dynamics (CFD) 

Computational Fluid Dynamics (CFD) is a technique which uses conservation principles 
and rigorous equations of fluid flow (Navier-Stokes) along with specialized turbulence 
models (k-, k-, SST among others). These models are more accurate and fundamentally 
more acceptable than empirical ones. The empirical models are approximations that 
assemble different phenomena to remove a number of unknown parameters. For this 
reason, these models are not reliable and therefore should not be generalized. 
The CFD models can be divided into two groups: the Eulerian-Eulerian model in which the 
gas and solid phases are considered as two interpenetrating continuum flows; and the 
Eulerian-Lagrangian model that consider the gas as a fluid phase and the solids as discrete 
phase. The Eulerian-Lagrangian model calculates the trajectory of each individual particle 
using Newton’s second law. The interaction between particles can be described by the 
potential energy or the dynamic of collisions. This method has the advantage of knowing 
exactly the particle trajectory and the system variables. However, this requires high 
computational effort, higher yet when gas and solid velocity fields are coupled. 

4.1 Governing equations 
Governing equations for Eulerian-Eulerian model are here presented in tensor notation. 

4.1.1 Continuity equations 
The gas and solid continuity equations are represented by: 

     0g g g g gv
t
   

   


  (1) 
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     0s s s s sv
t
   

  


  (2) 

Where α, ߩ	 and v


 are volume fraction, density and the vector velocity, respectively. No 
mass transfer is allowed between phases. 

4.1.2 Momentum equations 
The gas phase momentum equation may be expressed as: 

      g g g g g g g g g g g s gv v v p g v v
t
                     

       (3) 

 p and g are fluid pressure and gravity acceleration. β is the drag coefficient between the 
phases g and s. The stress tensor is given by: 

   2
3

T

g g g g g g g gv v v            

    (4) 

The solid phase momentum equation may be written as: 

      s s s s s s s s s s s s g sv v v G g v v
t
         

           
       (5) 

   2
3

T
s s s s s s s sv v v            

    (6) 

G is the modulus of elasticity given by: 

  ,maxexp G s sG C     
 (7) 

Where αs,max is the maximum solid volume fraction and β is the interface momentum 
transfer proposed by Gidaspow, (1994): 
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Where dp and CD are the particle diameter and the drag coefficient, based in the relative 
Reynolds number (Res) 
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4.1.3 Energy equation 
The gas and solid energy equations can be written as: 

         r
g g g g g g g g g g s g g g r

r

C
H v H T T T H

t t
        


          

   (11) 

        s s s s s s s s s s g sH v H T T T
t
      

        


  (12) 

Where 
H = Specific enthalpy 
T = Temperature 
γ = Interface heat transfer coefficient: / pNu d   

λ = Thermal conductivity 

4.2 Turbulence models 
Turbulence is that state of fluid motion which is characterized by random and chaotic three-
dimensional vorticity. When turbulence is present, it usually dominates all other flow 
phenomena and results in increased energy dissipation, mixing, heat transfer, and drag. The 
physical turbulence models provide the solution the closure problem in solving Navier – 
Stokes equations. While there are ten unknown variables (mean pressure, three velocity 
components, and six Reynolds stress components), there are only four equations (mass 
balance equation and three velocity component momentum balance equations). This 
disparity in number between unknowns and equations make a direct solution of any 
turbulent flow problem impossible in this formulation. The fundamental problem of 
turbulence modeling is to relate the six Reynolds stress components to the mean flow 
quantities and their gradients in some physically plausible manner. 
The turbulence models are summarized in Table 4 
 

Family 
group 

Models Description and advantages 

Reynolds – 
Averaged 
Navier – 
Stokes 
(RANS) 

Zero equation models 
The most widely used models. Its main 
advantages are short computation time, stable 
calculations and reasonable results for many 
flows. 

One equation models 

Two equation models 
κ – ε 
κ – ω 

Reynolds Stress Model (RSM) 
Provides good predictions for all types of flows, 
including swirl, and separation. Longer 
calculation times than the RANS models. 

Large 
Eddy 
Simulation 
(LES) 

Smagorinsky-Lilly 
model Provides excellent results for all flow systems. 

LES solves the Navier-Stokes equations for large 
scale motions of the flow models only the small 
scale motions. 

Dynamic subgrid-scale 
model 
RNG – LES model 
WALLE model 
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Family 
group 

Models Description and advantages 

Detached Eddy Simulation (DES) 

The difficulties associated with the use of the 
standard LES models, has lead to the 
development of hybrid models (like that DES) 
that attempt to combine the best aspects of 
RANS and LES methodologies in a single 
solution strategy. 

Direct Numerical Simulation (DNS) 

The most exact approach to turbulence 
simulation without requiring any additional 
modeling beyond accepting the Navier–Stokes 
equations to describe the turbulent flow 
processes.  

Table 4. Summary of turbulence models. 

4.3 System discretization 
The most important numerical methods used to approximate the partial differential 
equations by a system of algebraic equations in terms of the variables at some discrete 
locations in space and time (called “discretization method”) are the Finite Volume (FV), the 
Finite Difference (FD) and the Finite Element (FE) methods. In this book, the finite volume 
method and the commercial software CFX® 12.0 were chosen; the solution domain is 
discretized in a computational mesh that can be structured or unstructured. 

Finite volume (FV) method 

The FV discretization method is obtained by integrating the transport equation around a 
finite volume. The general form of transport equations is given by: 

       
IVII IIII

v S
t  


  


       



 

 (13) 

i. Transient term 
ii. Convective term 
iii. Diffusive term 
iv. Source term 
The transport equations are integrated in each computational cell using the divergence 
theorem over a given time interval ∆t: 

  t t

t V v

dV v dA dA S dV dt
t  


 
          

  
    

 
   (14) 

Linearization and interpolation techniques can be clarified considering the finite volume P 
shown in Figure 3.  
In agreement with Figure 3 notation, diffusive term can be represented as 

    w
P W w P W

w

A
dA D

h


     


      


  (15) 
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Fig. 2. Gas flow over a flat solid surface (left to right) experimental picture, refined mesh 
near the wall and contrast between experiment and discretization. 

 

 
Fig. 3. Finite volume representation and notation. 

4.4 Source term linearization 
A generic source term may be written as 

 
P P P PCS V S S 

    (16) 

Where PS  is the value of source term in the center of the cell P and VP is the volume of 
computational cell centered on node P. The method to represent PS was suggested by 
Patankar, 1980 
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*

* *P
P P P P

dS
S S

d


   


 
   

 
 (17) 

This type of linearization is recommended since the source term decreases with increasing 
Φ. The source term coefficients are represented by: 

 
*

* *P
P P PC

dS
S S V

d


 


      
   

 (18) 
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S V

d



 

  
 

 (19) 

4.4.1 Spatial discretization 
The most widely used in CFD is first and second order Upwind methods. In the first order 
one, quantities at cell faces are determined by assuming that the cell-center values of any 
field variable represent a cell-average value and hold throughout the entire cell. The face 
value (Φw) are equal to the cell-center value of Φ in the upstream cell. 

  
w w W w Wv dA v A C     


  (20) 

Where, Cw is the west face convective coefficient. Aw can be represented by: 

  ,0w w wA MAX C D   (21) 

In the second order one, quantities at cell faces are computed using a multidimensional linear 
reconstruction approach (Jespersen and Barth 1989). In this approach, higher-order accuracy is 
achieved at cell faces through a Taylor series expansion of the cell-centered solution about the 
cell centroid. Thus, the face value Φw is computed using the following expression: 

  3 1 1
2 2 2w W WW W W WW           (22) 

The east face coefficient and matrix coefficient are shown below 

 3 1
2 2e P W     (23) 

    1
,0 ,0

2w w e wA MAX C MAX C D    (24) 

4.4.2 Temporal discretization 
Temporal discretization involves the integration of every term in the differential equations 
over a time step ∆t. A generic expression for the time evolution of a variable Φ is given by 

  F
t
 



 (25) 
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Where the function F incorporates any spatial discretization. The first-order accurate 
temporal discretization is given by 

  
1n n

F
t

  
 




 (26) 

And the second-order discretization is given by 

  
1 13 4

2

n n n

F
t

   
  




 (27) 

5. Case studies 

In order to give a better introduction with regards to the simulation of fluidized beds, in this 
chapter there are presented three case studies that were carried out by using a CFD software 
package.  
The case studies were carried out using simulations in dynamic state. These simulations 
were set up taking into account the average value of the Courant number, which is 
recommended to be near 1. Besides this, it was used a constant step time, in this way was 
possible to have numerical stability during the execution of each of the simulations. 

5.1 Cases 1 and 2 
Lab scale riser reactor (Samuelsberg and B. H. Hjertager 1996; V Mathiesen 2000). Riser 
height, 1 m; riser diameter, 0.032 m. Experimental data and LES - Smagorinsky simulations 
were compared for three velocities with initial particle bed, 5cm. 

5.1.1 Mesh parameters and boundary conditions 
 Control volumes number: 100.000 
 ∆x = 2 mm 
 Matrix determinant > 0.5 and minimum angle > 50° 
The boundary conditions for both cases are shown in Table 5 and Table 6. 
In addition, tests were made with a 500.000 control volume mesh with same block 
distribution (the description of volume distribution in the meshes, are presented in Table 7). 
Obtaining similar results with the 100.000 control volume mesh. Both meshes are shown in 
Figure 4. 
 

In 
Gas velocity = 0.36; 1.42 m/s 
Particle mass flow equal to the output 

Out Opening = atmospheric pressure 

Wall 
Particles = free slip and No slip 
Gas = no slip  

Initial height Bed height = 0,05 m 
Particles 60 μm; 1600 kg/m3 

 

Table 5. Boundary conditions for the Case 1. 
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In 
Gas velocity = 1 m/s 
Particle mass flow equal to the output 

Out Opening = atmospheric pressure 

Wall 
Particles = No slip 
Gas = No slip 

Initial height Bed height = 0.05 m 
Particles 120 μm, 2400 kg.m-3 

Table 6. Boundary conditions for the Case 2. 

 
Mesh dxdp Volumes Number dx 

I 15 99900 0.05 
II 10 467313 0.08 

Table 7. Volume discretization of the meshes. 
 

 
Fig. 4. Schematic diagram of the Table 7 meshes. Up: Mesh I. Down: Mesh II 
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Numeric calculations performed (Vreman, Geurts, and Kuerten 1997; Chow and Moin 2003) 
showed that the required values to obtain an accurate numerical solution, it is necessary to 
use a ratio dx  0.25 for the second order spatial scheme, and a ratio dx < 0.5 for the sixth 
order scheme.  
The values of dx presented in Table 7 are within the range recommended in the literature 
(Chow and Moin 2003; Agrawal et al. 2001; van Wachem 2000; Ahmed and Elghobashi 2000; 
Vreman, Geurts, and Kuerten 1997). 
Figure 5 presents the solid volume fraction time evolution for the mesh II with superficial 
velocity 1 m/s. At the beginning, the solids present in the riser are forced to flow in the 
upward direction, similar to a plug flow.  
When the bed of solids starts to expand, it is observed high solid particle concentration at 
the center of the tube and near the walls (Figure 5). This reordering of solid particles is a 
counteraction in order to offer a lower resistance to the gas flow. This type of flow regime is 
known as pre-fluidized bed.It is important to mention that one of most relevant 
characteristics of the fluidization is the high contact area between the solid particles and the 
fluid. In this way, a cubic meter of particles of 100 micron contains a superficial area of 
around 30000 m2. The advantage of this high surface area is reflected in a high mass and 
heat transfer rates between the solid and the fluid.  
 

 
Fig. 5. Evolution of the volume fraction field in a fluidized bed at 0, 11, 35, 70, 90, 132, 165, 
185, 198, 220, 242, 264, 275, 290, and 317 ms. 

Figure 6 shows the similarity between results presented by Miller and Gidaspow (1992). 
Here it is represented the regions of high and low solid concentration. Near the walls 
velocity is negative and near the center velocity is positive. 
The annular-core behavior is something that detrimental in the units of Fluid Catalytic 
Cracking (FCC), since big fraction of the oil is converted in a region where the catalyst works 
less efficient. In addition to this, the particles that flow at center core are expose to bigger 
concentrations of oil compounds, which is something that produces faster deactivation of the 
catalyst. One the strategies to solve this issue is to inject pressurized gas in perpendicular 
direction to the flow in the reaction zone. Another solution is to include rings connected to 
walls, with the purpose of redirecting the solids from the wall towards the center.  
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Fig. 6. Comparison of solid phase velocity profile presented by Miller and Gidaspow (1992) 
with the CFD simulations (-▲-) and experimental data performed by Samuelsberg and B. H. 
Hjertager (1996) (●). 

To get an impression regarding the flow behavior inside the column, the time averaged solid 
volume fraction is plotted at different column heights, 0.16 m, 0.32 m and 0.48 m (Figure 7). 
Here it can be observed the strong tendency of the solid particles to be near the wall. 
 
 

      
 

Fig. 7. Axial profile of the solid phase volume fraction fields in the center (left) and radial 
profiles at 0.48 m, 0.32 m, 0.16 m (right up to down). Superficial velocity 0.36 m s-1 
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5.2 Case 3 
Pilot plant scale riser reactor (Bader, R., Findlay, J. and Knowlton, TM 1988).  Riser height: 
13 m, riser diameter 0.3 m. Entrance with angle 60°, gas superficial velocity 3.7 m and solids 
flux 98 kg/(s.m^2)  as shown in Figure 8. 
 

 

    

    
Fig. 8. Solids volumetric fraction in the center of the riser. Simulation time 15 sec. Left to right: 
LES Smagorinsky, LES WALE, LES Dynamic model, Detached Eddy Simulation (DES). 

In the Figure 8 can be observed that the solid particles enter to the reactor uniformly 
distributed, after a short distance these particles start falling due to the gravity and they start 
flowing over the wall of the inclined pipe. After this, the solids fall into a turbulent zone where 
they get mixed. Some of the particles will continue falling over the vertical wall opposite to the 
entrance. The core-annular zone is formed at some height in the middle of the column. 
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6. Conclusions 

Computational fluids dynamics is a very powerful tool understanding the behavior of multi 
phase in engineering applications.  
Large eddy simulation (LES) turbulence method provides a very detailed description of two 
phase flow, which makes it suitable for simulation models that are validated with 
experimental data. By applying the LES method, it is possible to characterize different 
regions of a fluidized bed (core-annulus). LES can be considered as a valuable method for 
development and validation of closure models that include additional phenomena like heat 
exchange, mass transfer and chemical reactions.  
It is important to constantly monitor the simulation, using parameters such as the Courant 
number, creating a function that calculates the maximum and average number of the control 
volume courant. The average value is recommended that is near or less than unity. 
Finally, it is important to comment that success in the validation of experimental data 
depends on the appropriate choice of the experimental technique used to measure variables. 
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1. Introduction 

Injection of the liquid fuel across the incoming air flow is widely used in gas turbine engine 
combustors. Thus it is important to understand the mechanisms that control the breakup of 
the liquid jet and the resulting penetration and distribution of fuel droplets. This 
understanding is needed for validation of Computational Fluid dynamics (CFD) codes that 
will be subsequently incorporated into engine design tools. Additionally, knowledge of 
these mechanisms is needed for interpretation of observed engine performance 
characteristics at different velocity/altitude combinations of the flight envelope and 
development of qualitative approaches for solving problems such as combustion 
instabilities (Bonnel et al., 1971). This chapter provides an introduction and literature review 
into the subject of cross-flow fuel injection and describes the fundamental physics involved. 
Additionally highlighted are experimental technique and recent experimental data 
describing the variables involved in fuel spray penetration and fuel column disintegration. 
In recent years, there has been a great drive to reduce harmful emissions of oxides of 
Nitrogen oxides (NOx) from aircraft engines. One of the several approaches to achieve low 
emissions is to avoid hot spots in combustors by creating a lean homogeneous fuel-air 
mixture just upstream of the combustor inlet. This concept is termed as Lean Premixed 
Prevaporized (LPP) combustion. Creating such a mixture requires fine atomization and 
careful placement of fuel to achieve a high degree of mixing. Liquid jet in cross flow, being 
able to achieve both of these requirements, has gained interest as a likely candidate for spray 
creation in LPP ducts (Becker & Hassa, 2002). Since the quality of spray formation directly 
influences the combustion efficiency of engines, it is important to understand the 
fundamental physics involved in the formation of spray.  
As seen in Fig. 1, the field of a spray created by a jet in cross flow can be divided into three 
modes: 1) Intact liquid column, 2) Ligaments, and 3) Droplets. The liquid column develops 
hydrodynamic instabilities and breaks up into ligaments and droplets (Marmottant & 
Villermaux, 2004; Madabushi, 2003; Wu et al., 1997). This process is referred to as primary 
breakup. The location where the liquid column ceases to exist is known as the column 
breakup point (CBP) or the fracture point. The ligaments breakup further into smaller 
droplets and this process is called secondary breakup. 
The most relevant parameter for drop breakup criterion is the Weber number, 

fuelairair DUWe  /2  (in this formula ρair and Uair - density and velocity of the crossing air 

respectively, D - diameter of the injection orifice and Ϭfuel is the surface tension of the fuel). 
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We is the ratio of disruptive aerodynamic force to capillary restoring force. The critical We 
above which a droplet disintegrates is We=10 (Hanson et al., 1963). When Weber number is 
high (We >200), another mode of breakup called the shear breakup becomes dominant. 
During shear breakup, aerodynamic forces exerted by the flow on the surface of the liquid 
jet or ligaments strip off droplets by shear. Though both modes of breakup contribute to 
atomization of the liquid jet, the domination of one mechanism over the other is dependent 
on We and on liquid jet momentum flux to air momentum flux ratio, q.  
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Fig. 1. Schematic of spray created by a liquid jet in cross flow (from Ann et. al., 2006)  

Currently two parameters that characterize disintegration of the fuel jet in the cross flow 
are subjects of great interest among the users of the experimental data. They are (1) 
column breakup point (CBP) and (2) penetration of spray into the cross flow. The location 
of CBP is important for the development of computational models for the prediction of 
spray behavior. Since the aerodynamic drag for the liquid jet is significantly different 
from that of droplets, it is crucial to know the exact location of jet disintegration into 
droplets to be able to predict the extent to which the droplets penetrate into the air 
stream. On the other hand direct measurements of the spray penetration are significant 
for development of the design tools for use by the engine developers as well as for 
validation and adjustment of the spray computational models. Various researchers have 
measured CBP location and spray penetration with reasonable uncertainties. However, 
these parameters are still not explored extensively because of ambiguities in definition 
and due to experimental difficulties. A number of experimental studies of column 
breakup and spray penetration under conditions that simulate those in gas turbine 
engines were undertaken and are briefly reviewed below. 
In the early work on the aerodynamic breakup of liquid droplets in supersonic flows 
researchers (Ranger & Nichollas, 1969) carried out experiments to find the time required for 
individual droplets dropped into a supersonic cross flow to breakup to form a trace of mist. 
They found this time (tb) to be proportional to the droplet diameter (d), inversely 
proportional to the relative velocity between the droplet and the airflow (ua), and 
proportional to the square root of liquid-to-air density ratio (

al  / ). Based on the images 

taken, they found that the constant of proportionality (tb/t*), defined by equation (1) to be 5. 
Another conclusion of their study was that the effect of the shock wave on the aerodynamic 
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breakup of the droplets was minimal. The main function of the shock wave is to produce the 
high speed convective flow that is responsible for the disintegration of droplets. This 
prompted subsequent researchers to use this characteristic time (t*) for droplets in subsonic 
flows as well by. 

 
* 1/2 5.0

( / ) /
b b

l a a

t t
t d u 
   (1) 

Lower values of tb/t*=3.44 were reported later (Wu et al., 1997) for liquid jet disintegration in 
the cross flow with Weber number in the range of We=71 – 200. The column breakup 
location for higher We flows could not be determined. They also found that the CBP was 
located at about eight diameters downstream of the orifice in the direction of airflow for the 
cases reported. 
Other researchers (Sallam et al., 2004) measured column breakup point at We range of 0.5-
260. Their studies yielded different value of tb/t* = 2.5. However, the uncertainties became 
high as We of the flow was increased. This can be explained by the fact that the experimental 
methods that have been employed so far for measuring the CBP position involve the 
analysis of the spray images obtained by back illumination technique. This method works 
reasonably well for low We flows in the absence of shear breakup. In the shear breakup 
regime, that is relevant for the gas turbine applications it becomes very difficult to analyze 
the spray images and find the location of CBP because of the presence of droplets in high 
density around the liquid column. This paper demonstrates a method to overcome this 
shortcoming. 
Method used in the current study was first suggested by (Charalompous et al., 2007) who 
developed a novel technique to locate the CBP for a co-axial air blast atomizer. In this 
atomizer high density of droplets around the liquid jet column limited optical access to the 
jet. To overcome this problem, they illuminated the liquid jet column seeded with 
fluorescent Rhodamine WT dye with a laser beam from the back of the injector. The liquid 
jet acted as an optical fiber up to the point it breaks up. The jet is visible due to florescence of 
the dye until the location of the CBP and the light gets scattered beyond that location giving 
the precise location of the CBP. The current study aims at extending this technique to locate 
the CBP of liquid jets in cross flow. 
Spray penetration into the cross flow have received significant attention by the 
experimentalists hence placement of fuel in a combustor is significant for its design. In 1990s 
researchers (Chen et al., 1993, Wu et al., 1997) have carried out experiments at different 
momentum flux ratios of water jets and developed a correlation of the dependence of the 
upper surface trajectory of jets in a cross flow with liquid to air momentum flux ratio. Later 
(Stenzler et al., 2003) a Mie scattering images were used to find the effect of momentum flux 
ratio, Weber number and liquid viscosity on jet penetration. As in other previous studies, 
they found that increasing momentum flux ratio increased penetration. Increasing the 
Weber number decreased the average droplet size and since smaller droplets decelerate 
faster, the overall penetration of the spray decreased. However, many of these correlations 
are applicable to specific operating conditions, injector geometries and measurement 
techniques. 
It was also found (Tamaki et al., 1998, 2001) that the occurrence of cavitation inside the 
nozzle significantly influences the breakup of the liquid jet into droplets. The collapse of 
cavity bubbles increased the turbulence of the liquid jet accelerating its breakup into 
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droplets. Additional researchers (Ahn et al., 2006) explored the effect of cavitations and 
hydraulic flip of the orifice internal flow on the spray properties created by a jet in cross 
flow. They found that while spray trajectories followed the previously obtained correlations 
(Wu et al., 1997) in absence of cavitations and hydraulic flip, the presence of these 
phenomena resulted in significant disagreements between the observed trajectories and the 
ones reported (Wu et al., 1997). Consequently, they concluded that the design of the injector 
has a significant effect on the spray trajectories. 
Practically all previous studies of fuel spray attempted to describe its penetration trajectory 
into the cross-flow of air in the form of equation that typically incorporate momentum flux 
ratio of the liquid jet to air flow, 22 / airairfuelfuel UUq  , Weber number and certain function 

that describe shape of the outer edge of the spray. Usually, these equations incorporate a 
number of empiric coefficients that were obtained by processing experimental data. In spite 
of availability of dozens of correlations their practical use remains problematic because they 
all provide different results. Figure 2 shows result of application of different correlations to 
one spray with q=20 and We=1000. 
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Fig. 2.  Comparison of the spray penetration trajectories (x and z – coordinates in the 
direction of fuel injection and crossing air flow respectively, d  - is diameter of the injection 
orifice) 

It can be observed that the spray penetration trajectories differ from each other to an extent 
of 100%. Among factors that causes such a big difference the following ones seems to be the 
most important: 
 Design of the injector and its position in the cross flow (i.e. l/d, shape and quality of the 

internal fuel path, presence or absence of the spray well or cavity between the injection 
orifice and the channel e.t.c). 
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 Factors that vary flow conditions in the experiment inconspicuously for the researcher 
such as temperature of the crossing air flow which may change the temperature of the 
injector and thus surface tension and viscosity of the injected fuel. 

 Turbulence of the core and boundary layer characteristics of the crossing air flow that 
may significantly influence spray penetration but rarely mentioned by researches. 

 Imaging technique that was used for many years for capturing spray trajectories was 
static photography that typically captured superposition of sprays on one image due to 
the fact that time constant of such oscillatory phenomena as liquid jet disintegration in 
the cross flow is by several orders lower than expose rate of any available camera used 
in most of experiments. 

The objective of this study was to investigate the spray trajectories and determine locations 
of the column break up points (CBP) formed by the Jet-A fuel injected from the injectors of 
different geometries into a cross flow of air while the above mentioned influencing factors 
will be isolated. For this purpose:  
 Both injectors used in the study that had the same diameter of the orifice and a different 

shape of the internal path were manufactured using the same equipment and 
technology. They were installed with orifices openings flush with the air channel wall 
(i.e. with no spray well, or cavity). 

 Crossing air flow was of the room temperature. Its turbulence level in the core was 
~4%. Thickness of the boundary layer was ~3mm. 

 High speed imaging technique (~24,000fps) with spray illumination by the short laser 
flashes of 30ns duration was used to capture instantaneous images of the spray several 
times during its movement from maximum to minimum position. That allowed 
statistically relevant processing of the images and thus extracting information about the 
averaged spray trajectories and their RMS values.  

Sprays penetration into the cross flow were investigated using Jet-A fuel for a wide range of 
momentum flux ratios between q=5 and q=100. Velocity of the air flow was varied to attain 
Weber numbers in the range of We=400 to We=1600. Air pressure and temperature in the 
test channel were P=5 atm and T~300K respectively. Column breakups were investigated 
also at higher air temperature of 550K (in addition to T=300K) and by using water injection 
in addition to jet fuel experiments in attempt to achieve wider range of non-dimensional 
parameters. 

2. Experimental setup 

Figure 3 shows a schematic of the experimental setup used to study the injection of a liquid 
jet from a flat surface into the cross flow of air at elevated pressure. This setup had a plenum 
chamber, a rectangular air supply channel, a test section with injector under investigation 
and a pressurized chamber with four 38mm (1.5 inch) thick windows for optical access to 
the spray. 
Plenum chamber was 203.2 mm in diameter and 457.2mm long. Two perforated screens 
were installed at the entrance and at the exit of the plenum to achieve necessary level of 
turbulence and flow uniformity in the test section. The rectangular supply channel was 
62.3mm (2.45 inch) by 43.2mm (1.7 inch) in cross-section and was 304.8mm long. It was 
equipped with a “bell-mouth” air intake which was connected to the bottom of the plenum 
chamber to smoothen the air flow. On the other end of the channel four aerodynamically 
shaped plates were attached to the channel creating a test section with a cross-section 31.75 x 
25.4mm (1.25 x 1.00 inch). 
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Fig. 3. Schematic of the test facility 

This test section has ~50mm (2.00 inch) long, 6mm (1/4 inch) thick windows on three sides 
for optical access to the spray zone. The fuel injectors were installed on the centerline of the 
plate 10mm downstream of transparent section. The whole system was fixed to a massive 
optical table while optical tools were installed on a traversing mechanisms, which provides 
precise movement (minimal step is 0.0254mm) in three mutually orthogonal directions 
using step motors and electronic drivers controlled using a computer. In the current study, 
1mm increments of movement were typically used for characterizing the spray. Maximum 
possible flow conditions in the test sections were P=4.2MPa (600 psi) and T=755K (900F) 
which correspond to supercritical flow conditions for the Jet-A fuel. These flow conditions 
were achieved by supplying preheated air flow from the controllable high pressure air 
supply at P < 5.0Mpa (720 psi) and T < 800K (10000F) into the plenum, where it then enters 
the 1.25” × 1.00” test section. 
Velocity in the test section was controlled by the motorized control valve in the exhaust line 
(see Figure 3). Cooling of the test channel, test section as well as inner and outer windows in 
case of the preheated air use was achieved by pressurizing of the pressure vessel with the 
high pressure air flow (P<5.0MPa, T~295K). This cooling air was eventually mixed with the 
high temperature air from the test section in the exhaust path. Pressure of this cooling air 



 
Fuel Jet in Cross Flow – Experimental Study of Spray Characteristics 

 

65 

was ~1.4KPa (2 psi) higher than in the test section to keep temperature in its surrounding 
below 1000C. Mixture of the air passing the test section, injected Jet-A fuel and cooling air 
left the rig through the exhaust line, passing through the control valve, flow straightener 
and afterburner where fuel was burned in the pilot flame of natural gas to prevent fuel from 
entering the atmosphere. 
Flow conditions in the test section were monitored using 3mm (1/8inch) diameter Pitot tube 
and thermocouple, which were located within the 2.45” × 1.70” test channel (see Figure 4). 
An additional pressure transducer and thermocouple were installed just downstream of the 
test section. Differential pressure sensor measured pressure drop along test section to 
support flow velocity measurements by the Pitot tube. Axes of the coordinate system used 
in this study were designated as shown on the Figure 5. X was direction of fuel injection. Y – 
Lateral spread of the spray and Z – Direction of the air flow. 
 

 
Fig. 4. Instrumentation of the test section 
 

 
Fig. 5. Coordinate system for spray characterization 



 
Advanced Fluid Dynamics 

 

66

3. Results and discussion 

This section consists of several parts including  
 Characteristics of the incoming air flow; 
 Characteristics of the tested fuel injectors which include: 

 Hydraulic characteristics 
 Images of the fuel jet exiting from both injectors in the absence and in the presence 

of the crossing air flow  
 Droplet sizes 

 Locating of the jet breakup position 
 Results of the spray penetration measurements obtained by processing of images 

obtained at different Weber numbers and different momentum ratios 
 Development of the empirical correlations for spray penetration into the cross flow 

3.1 Characteristics of the incoming air flow 
Velocity profiles of the incoming air flow in the test channel were measured in three 
representative cross-sections in the presence and in the absence of spray using three 
dimensional (3-D) Laser Doppler Velocimetry (LDV) system. This system consisted of two 
transceivers oriented 90 degrees apart, which were installed on the rail connected to the 3-D 
remotely controlled traversing mechanism. This system optically accessed test section from 
the orifice plate (X=0) to the coordinate X<25mm. To obtain velocity measurements 
incoming air was seeded with 3-5mkm alumina particles. Results of measurements are 
presented on Figure 6 in the form of the mean and RMS velocity profiles. It is clear that the 
mean and RMS velocity profiles are of trapeze-shape form typical for turbulence flow in 
tubes. Presence and absence of spray did not produce any significant differences in velocity 
profiles. No significant differences in the profiles were indicated while measured across the 
test channel 5mm upstream (z/d~ 10) and 20mm downstream (z/d~40) of the point of 
injection.  
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Fig. 6. Characterization of the crossing air velocity field in the test section 
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3.2 Characteristics of injectors 
The main difference between the investigated injectors was shape of the surface between the 
plenum and the injection orifice. 
 

   
(a) Sharp edged injector  (b) Round edged injector 

Fig. 7. Schematics of the tested injectors  

One injector had sharp edge as shown on the Fig 7-a and the other one had smooth 
transition path from the plenum to the orifice (i.e., round edge, see Fig 7-b). Their hydraulic 
characteristics presented on the Fig. 8 reflect this difference in the injector’s internal shape. 

Specifically, discharge coefficient 
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 of the sharp edge orifice was 

relatively constant Cd~0.75 in the tested range of ReD numbers while the discharge 
coefficient of the round edge orifice is Cd~0.96 at the Reynolds numbers exceeding 
ReD=10,000 (Pinj.>60psi) which is relevant to the current study. 
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Fig. 8. Hydraulic characteristics of the tested injectors (ReD=fuelDinj.Ufuel/fuel) 

Effect of injector geometry on jet disintegration was first demonstrated without cross flow of 
air. Images of the fuel jets injected from both injectors into the atmosphere are presented on 
the Fig. 9. It is clearly seen that the jet coming out of the sharp edged orifice disintegrated 
forming spray structures, ligaments and droplets (see Figure 9-a) while jet injected from the 
round edge orifice was relatively smooth and intact (Figure 9-b). 
A closer look on these fuel jets without cross flow in a near field (see Figure. 10) reveals that 
the jet injected from the sharp edge orifice expands and disintegrates while the jet from the 
round edge orifice shows the development of the hydrodynamic instabilities (see Figures 10-
a and 10-b respectively). This observation suggests that internal turbulence created by the 
sharp edge at the entrance of the cylindrical orifice (L/D~10) dramatically change jet 
boundaries and may lead to the differences in spray creation especially when the 
mechanism of the jet disintegration in the cross flow at elevated Weber numbers (We>200) is 
“shearing”. In fact images of the fuel jets shown on the Figure 11 clearly indicate that 
significant scale difference in liquid border structure on the outer edge of the jet remain 
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while jets are injected into the cross flow. Size of the outer border structures on the jet 
exiting from the round edge orifice (Figure 11-b) is at least ten times smaller and more 
organized than on the jet exiting from the sharp edged orifice (Figure 11-a). 
 

 
(a) Sharp edged injector 

 
(b) Round edged injector 

Fig. 9. Images of the fuel jet injected into the atmosphere (no cross flow) from injectors 

 

   
(a) Sharp edged injector   (b) Round edged injector 

Fig. 10. Zoom in the liquid jets injected into the atmosphere (no cross flow) from injectors 

 

   
(a) Sharp edged injector    (b) Round edged injector 

Fig. 11. Images of the fuel jet injected into the cross-flow of air at We=1000, momentum flux 
ratio q=20 and Re=14,700. 
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The above mentioned difference in the outer border structure of the jet can potentially 
influence size of the created droplets. In fact, sharp edged injector used in the current study 
produces larger droplets as indicated on the counter plots of the Sauter Mean Diameter 

  iiii nDnDDSMD 23
32 / , with Di – diameter of the individual droplet) presented for 

both tested orifices (sharp and round edged) on the Figure 12 (-a and –b respectively). 
Measurements were undertaken using PDPA in the representative cross-section of the spray 
located 60 orifice diameters downstream of point of injection (z/d=60) where spray was fully 
developed at the same flow conditions (We=1000 and q~20) for both orifices. Comparison of 
the SMD along the center line in the same plane (z/d=60) presented in the Figure 13 reveals 
~10% larger droplets on the periphery of the spray produced by the sharp edge orifice. 
 

   
(a) Sharp edged injector    (b) Round edged injector 

Fig. 12. Sauter Mean Diameter (SMD) in the cross plane of the spray at z/d=60 for tested 
injectors 
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Fig. 13. Comparison of the SMDs along the central plane at z/d=60 
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3.3 Locating of the jet breakup position 
Liquid column breakups were investigated using the same pair of the injectors (sharp and 
round edge) shown on the Figure 7. For this purpose injectors were modified to allow 
installation of the fiber optic connector coaxially with the injector orifice to provide 
capabilities for application of the light guiding technique. Measurements were conducted at 
the room and elevated temperature of the crossing air flow (T=300K and 555K respectively). 
Two liquids (Jet-A and water) were used to extend range of possible correlation of the jet 
location versus non-dimensional parameter. 
Figure 14 schematically shows liquid jet light guiding technique that was used for locating 
the column breakup point (CBP) by letting the liquid jet act as an optical fiber and transmit 
light through it. 
 

 
Fig. 14. Experimental schematic for the liquid jet light guiding technique 

Pulsed laser light was introduced from the back of the injector using an optical fiber to 
illuminate the liquid jet. The laser light propagates through the liquid in the injector and 
reaches the liquid jet column. Light coming out of the orifice undergoes total internal 
reflection and is guided by the liquid jet like in optical fibers. This effect is based on the fact 
that the critical angle for total internal reflection for the interface between the Jet-A and air is 
43°. In other words, if the liquid jet column bends by over 430 abruptly, a ray of light 
entering the liquid jet parallel to the injector will also be refracted out of the liquid jet 
column in addition to being reflected. No such abrupt bends were observed in this study. 
This ensures that the attenuation of light intensity in the liquid jet column due to refraction 
is not significant enough to completely terminate the light propagating through the jet. 
Slightly different jet illumination techniques were used in this study for the Jet–A and water. 
When the liquid used was Jet A, Metalaser Technology MTS-20 pulsed Copper Vapor 
laser with tunable pulse frequency (in the range of 5 kHz – 8 kHz) and a power of about 
5mJ per pulse was used for illuminating the liquid jet. When water was used as the liquid 
for creating the spray, a Nd:YAG laser with a frequency of 10 Hz and a power of about 
50mJ per pulse was used for illumination. To make the entire mass of the liquid through 
which light is passing visible both liquids were seeded with a fluorescent dye. The dyes 
used were Pyrromethene 567 with Jet A and Fluorescein with water. Both these dyes 
absorb the laser light and fluoresce in the yellow region. An optical filter was used to cut 
off the scattered light. The farthest visible point from the center of the orifice in the image 
is considered to be the CBP. 
Figure 15-a shows a typical image of a jet in cross flow obtained by employing the liquid jet 
light guiding technique. This raw image was eventually inverted into a binary field shown 
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in Figure 15-b by application of the threshold that was set to the intensity of the image 
which corresponds to the sharp fall in intensity of the liquid jet. The edge of this binary field 
was tracked to obtain the complete boundary of the liquid jet (see Figure 15-c). The farthest 
point on this boundary from the center of the orifice is defined as the CBP in this study. This 
CBP position was averaged over 150 images. Figure 15-d shows the averaged image of the 
liquid jet obtained using this technique with crosses indicating individual CBPs and circle 
indicating the average CBP location for the investigated operating conditions. 
Figures 16-a and -b show the coordinates of the mean location of the CBP in the direction of 
fuel injection (X) and airflow (Z) downstream of the orifice respectively. Data of all four 
experimental series demonstrate the same effect of the CBP approximation to the orifice 
with the growth of momentum flux ratio (q). Two competing factors control position of the 
CBP: (1) Increase of the liquid jet velocity with the growth of q and (2) acceleration of the jet 
disintegration with the growth of the liquid velocity and thus its internal turbulence. This 
competition is clearly indicated by the maximum on the graph, which shows X/d coordinate 
of CBP on the Figure 16-a. This effect is much stronger for the sharp edged orifice at higher 
temperature of the crossing air flow. This fact supports hypothesis of the influence of 
internal turbulence of liquid jet upon the location of CBP because of possibility of cavitation 
at increased temperature of the injector internal surfaces caused by the high temperature of 
the crossing air. 
 
 

  
(a) Raw image   (b) Binary field 

  
(c) Boundary with indicated CBP (d) Averaged image and CBP location 

 

Fig. 15. Methodology for locating the column breakup point (CBP) 
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(a) In the direction of fuel injection  (b) In the direction of crossing air flow 

 

Fig. 16. Location of the column breakup point (CBP) 

Figure 17 shows position of the CBP as a function of Weber (We) number. In fact CBP 
location was determined to be at about 1-4 diameters downstream of the orifice. This 
distance is reduced with increase of We similar to the dependence upon the momentum flux 
ratio in Figure 16. This occurs because an increase of We causes an increase of the fuel flow 
rate and thus velocity of liquid which in turn enlarge the scale of structures (see Figure 11) 
in the jet boundary. Presumably these larger structures accelerate process of jet 
disintegration by aerodynamic shearing. 
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Fig. 17. Typical dependence of the CBP location upon the Weber number for the round edge 
orifice 

It is worth to note that distances at which fuel jet disintegrates in this study are much 
shorter compared to prior studies (Wu et al., 1997; Sallam et al., 2004) that reported the CBP 
to lie at a distance of 8 diameters downstream of the orifice for most of the investigated 
cases. This discrepancy can be attributed to the difference of operating conditions and 
measuring techniques used for the CBP locating. 
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Finally, the entire set of CBP obtained in this study for various values of airflow velocities 
(66 – 140 m/s) and velocity of the liquid jet (19 – 40 m/s) for two liquids (Jet-A and water) at 
two different cross flow air temperatures was summarized in the form of non-dimensional 
breakup time (tcb, defined in equation 1), which was calculated from the experimental data 
with the assumption that velocity of the jet in the X direction does not change until the 
column breaks up. tcb was obtained by dividing the X  distance of the column breakup point 
from the orifice by the jet exit velocity. Dependence of the tcb upon the liquid jet Reynolds 
number (Rej) is shown in the Figure 18. Non-dimensional breakup time (tcb ) is chosen as a 
parameter that is commonly used in computational models of spray formation (Wu et al., 
1995). Choice of the Re number is self explained by the fact that only one injector diameter 
was used in the current study and any variations in the Weber number (We) and momentum 
flux ratio (q) led to strong variation of velocity of the liquid jet (19 – 40 m/s) and thus of the 
Re number. This correlation is described by Equation 2 and as shown on the Figure 17 to be 
valid in the Rej range of 2,700 – 45,000. 
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Fig. 18. Non-dimensional breakup time dependence upon the Reynolds number of liquid jet 

3.4 Results of the spray penetration measurements 
Measurements of spray penetration were obtained using NAC GX-1 high speed camera that 
captured shadowgraph high definition images of the spray at the rate of 24,000fps at a 
resolution ~8.5 pixel/mm with a record length of about 20,000 frames. Illumination of the 
spray was achieved by the copper-vapor laser flashes (30ns) synchronized with the shutter 
openings. Laser light was introduced into the test section through the 1mm diam. quartz fiber 
from the laser. Collimator lens and diffusing glass plate created a uniform light beam that 
illuminated spray from one side through the window in the pressure vessel.  Camera that was 
installed on the other side of the pressure vessel captured shadowgraph images of the spray. 
Each of several thousands images (see example on the Figure 19-a) that compose a high 
speed movie of the fluctuating spray was processed individually in order to characterize the 
outer border of the spray pattern. For this purpose the following procedure was applied: 
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 Each image was corrected by subtraction of the averaged background. Images of the 
background were captured before any fuel was injected at each flow condition and then 
averaged for the experimental series to be processed. 

 Dynamic range of each image was adjusted to eliminate possible influence of laser 
pulse intensity fluctuations (i.e. to avoid affecting the overall brightness of the image). 

 Threshold was applied to all images in the series to equalize pixel intensity value in the 
spray region to unity and background region pixels to zero. The result of this 
conversion to a binary field is shown on the Figure 19-b. Line that divided white and 
black zones on the image represented outer border of the spray. 

In the final stage of processing, standard algorithms for calculating mean and maximum 
values and RMS were applied to the spray border lines. 
 

20 mm20 mm

45 mm45 mm

CrossCross--flowflow

 
(a) Raw image    (b) Binary field 

Fig. 19. Procedure for characterization of the outer border of the spray 

All together 58 high speed movies of the spray were captured at different flow conditions 
that are divided into two series. In the first one (so called We-sweep) fuel to air momentum 
flux ratio was kept constant equal to q= 20 while Weber number was changed from movie to 
movie. Spray movies at We=400, 600, 800, 1000, 1200, 1400, and 1600 were captured. 
In the other series of experiments (so called q-sweep) Weber number was kept constant 
(We=1000) while momentum flux ratio was varied from movie to movie. In the q-sweep 
momentum ratios of q=5, 10, 20, 40, 60, 80, 100 were examined. We-sweep and q-sweep 
were performed for both sharp and round edged injectors. 
Typical results of the We-sweep are presented on the Fig. 20 in the form of the mean 
positions of the spray outer boarders at different Weber numbers (see Figure 20-a) and their 
RMS values (Figure 20-b). It is clearly seen that the position of the spray outer edge and its 
RMS are practically independent of We number. RMS value increases almost linearly with 
axial position downstream the injection point. Similar result (luck of dependence on the 
Weber number) was obtained in the We-sweep performed with the round edged injector. 
Luck of dependence of the spray outer border on the Weber number allows significant 
simplification of the correlation function. 
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Fig. 20. Spray penetration (X) into the cross-flow of air at different Weber numbers (We=400 
...1600) for sharp edge injector 
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Series of curves each representing the mean position of the spray outer border at a certain 
momentum flux ratio (q-sweep) are shown on the Fig. 21 for the sharp- and round–edged 
orifices. Graphs reveal strong dependence of the spray border upon the momentum flux 
ratio. Both series of curves follow the same trend. At the same time they indicate greater 
spray penetration into the cross flow (~12%) for the sharp edge orifice comparing to the 
round edged orifice. 
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Fig. 21. Mean spray penetration into the cross flow of air at different momentum flux ratios 
(q=5…100). Note: We=1000=const. 

This difference can be attributed to the larger droplets size created by the sharp edge orifice 
shown on the Figures 12 and 13 and to the difference in the fuel velocity profiles reflected by 
the difference in flow coefficients Cd of the two tested injectors (see curves on the Fig. 8). 
Both factors are working towards higher spray penetration. In spite of the fact that the 
average fuel velocity discharged from the sharp edge orifice is lower than from the round 
edge orifice because of hydraulic losses, velocity in the center of the jet may be higher and at 
least some droplets will have higher momentum exclusively because of velocity difference. 
It is worth to note that the spray border curves obtained for both orifices converge 
significantly while being normalized by the Cd, (i.e., by the maximum velocity) and by the 
diameter (D32) of droplets. 
Curves on the Fig. 22 were obtained by normalizing the jet penetration into the cross flow 
by square root of the momentum flux ratio value, q. All the curves obtained in a wide range 
of q=5…100 and previously shown on the Figure 21 collapsed here in one line. This fact 
provides a good opportunity for the approximations of the spray penetration X using self 
explained physical dependence X~sqrt(q) ~ Ul. 
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Fig. 22. Normalized values of the mean spray penetration into the cross flow of air at 
different momentum flux ratios (q) 
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Measurements of the spray border obtained in the current study using high speed 
imaging technique were compared with the spray border data obtained using Phase 
Doppler method. For this purpose the data rate measured with the PDPA is used as a 
metric to locate the edge of the spray. The edge of the spray is assumed to be around a 
region showing 10% of the maximum data rate as shown in Fig. 23-b. Figure 23-a 
demonstrates a good agreement between the spray trajectories obtained using statistically 
relevant high speed imaging technique and borders of the spray measured by the 
processing of the PDPA data rate. It is clearly seen that the maximum spray penetration 
determined as X*=Xmean+ 2.8RMS is equal to the border determined at the level of 10% 
threshold of the PDPA data rate curve maximum. 
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Fig. 23. Comparison of the maximum spray penetration (i,e X*=Xmean+ 2.8RMS) at q=20 
measured by the high speed (HS) imaging technique and by the PDPA  

3.5 Development of the empirical correlations for spray penetration into the cross 
flow 
Literature sources suggest correlations for the spray outer border x/d=f(z/d) in several 
different forms that definitely include power function of the momentum flux ratio qn. 
Correlations may or may not include power function of Weber number. Shape of the spray 
pattern is typically described using logarithmic or power function. In spite of the fact that 
the accuracy of correlation can be improved by increasing number of empiric constants, 
current study seeks to simplify correlations. This was achieved by using self explained 
proportionality of droplets penetration into the cross flow to their velocity at the point of 
discharge (i.e. x/d~Ul~q0.5) and reducing number of the empiric constants by one (i,e qn = q0.5 ). 
This significant simplification was proved experimentally on both tested injectors in a wide 
range of momentum ratios between q=5 and q=100. 
Another simplification of correlation function was attained by limitation of the Weber 
number range between We=400 and We=1600. This in turn limited number of possible 
mechanisms of the jet disintegration to only one mode of liquid jet breakup; i.e., shear 
breakup excluding column break up. Independence of spray penetration upon the Weber 
number in the investigated range allowed an exclusion of the Weber number from 
correlations. 
As a result spray penetration for both injectors was correlated using only one empiric 
coefficient (a1) that depends only upon the shape of the injector internal surface by the 
following formula: 

b) Spray border determination 
using PDPA data rate curve 
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The other coefficient (a2) only shaped the spray border described by the logarithmic 
function and was independent of the injector design. Thus average and maximum spray 
penetrations were correlated using coefficients a1 and a2 presented in the table 1. 
 
  
 

Penetration Average Maximum 

Injector Type a1 a2 a1 a2 

Sharp Edge 1.2181 
1.8806 

1.9866 
0.7403 

Round Edge 1.0724 1.8641 

 

Table 1. Empirical correlation coefficients for the average and maximum spray penetration 
into the cross flow. 

Comparison of the experimentally measured and correlated spray penetrations X are 
presented on the Fig. 24 for the average and maximum penetration of the spray created by 
the sharp edged injector. 
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Fig. 24. Comparison between the correlated and experimentally measured values of spray 
penetration X  
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4. Conclusions 

1. Outer borders of the Jet-A spray trajectories created as a result of fuel jet disintegration 
in the cross flow of cold air at elevated pressure of 5 atm were measured by application 
the high speed imaging technique that allowed obtaining series of instantaneous images 
of the fluctuating spray. Locations of the liquid column breakup points (CBP) were 
determined using the light guiding technique that make mass of liquid illuminated 
from inside fluoresce till the moment jet losses its continuity.  

2. Crossing air flow had core turbulence ~4% and thickness of the boundary layer near the 
rectangular channel walls ~3mm. 

3. Both injectors used in the study had the same diameter of the orifice d=0.47mm and a 
different shape of the internal path (i.e., sharp and round edge orifice) were 
manufactured using the same equipment and technology. They were installed with 
orifices openings flush with the channel wall. 

4. Application of light guiding technique significantly improved accuracy of  the jet in 
cross flow column breakup point (CBP) determination especially at elevated Weber 
number (We>200) when traditional shadowgraph methods are not effective because of 
presence of droplets in high density around the liquid column.  

5. CBP was found to be strongly dependent upon velocity of the jet and internal 
turbulence of liquid inside the orifice. Jet injected from the sharp edge orifice 
disintegrates earlier compared to the round edge orifice. Dependence of the CBP 
location upon temperature of injector is much stronger in the sharp edge orifice 
compared to the round edge orifice. 

6. CBP locations were well correlated while converted to the non-dimensional form of 
characteristic time against the liquid Reynolds number. In fact, CBP location determined 
in this study were found to be 1-4 diameters of the jet downstream from the injection 
orifice which is much closer than it was reported in the previous studies (z/d~8).  

7. Spray trajectories were found to be independent upon Weber number in the 
investigated range between We=400 and We=1600 due to only shear breakup mode of 
liquid jet disintegration. 

8. Spray penetration into the cross flow was found to be proportional to square root of 
momentum flux ratio of the fuel jet to crossing air in the investigated range between 
q=5 and q=100 due to self explained dependence of droplet penetration upon the jet 
velocity at the point of injection. 

9. Spray created by the sharp edge injector penetrated 12% further into the cross flow than 
from the round edge orifice. This observation was attributed to a larger droplet size 
created by sharp injector and, possibly by the higher velocities of some droplets.  

10. Good agreement between the spray trajectories obtained using high speed imaging 
technique used in the current study and borders of the spray measured by the 
processing of the PDPA data. It was found that that the maximum spray penetration 
determined as Xmax=Xmean+ 2.8RMS is equal to the border determined at the level of 
10% threshold of the PDPA data rate maximum. 

11. Simple correlations for the spray trajectories were obtained using only two empirical 
coefficients. One of them corresponded to the shape of the injector internal path and 
the other one only adjusted shape of the logarithmic function that determined 
average or maximum penetration of the spray and was independent of the injector 
design. 
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1. Introduction

Since Bénard’s experiments on convection and Rayleigh’s theoretical work in the beginning of
the twentieth century (1)-(2), many experimental, theoretical and numerical works related to
Rayleigh-Bénard convection have been done (3)-(10) and different problems have been posed
depending on what is to be modelled. Classically, heat is applied uniformly from below
and the conductive solution becomes unstable for a critical vertical gradient beyond a certain
threshold.
A setup for natural convectionmore general than that of uniform heating consists of including
a non-zero horizontal temperature gradient which may be either constant or not (11)-(29).
In those problems a clear difference is marked by the fact that the fluid is simply contained
(11)-(19), where stationary and oscillatory instabilities appear depending on the multiple
parameters present in the problem: properties of the fluid, surface tension effects, heat
exchange with the atmosphere, aspect ratio, dependence of viscosity with temperature, etc.,
and the case where the fluid can flow throughout the boundaries (29), where vortical solutions
can appear reinforcing the relevance of convective mechanisms for the generation of vertical
vortices very similar to those found for some atmospheric phenomena as dust devils or
hurricanes (29)-(31).
The case where the fluid is simply contained displays stationary and oscillatory instabilities.
This problem has been treated from different points of view: experimental (11)-(18) and
theoretical, both with semiexact (20)-(21) and numerical solutions (40)-(28). This case contains
applications to mantle convection when the viscosity is large (45; 52) or it depends on
temperature (19).
There are not experiments yet for the case where a flow throughout the boundaries is allowed,
only observations of atmospheric phenomena (30; 33; 34; 36; 37), and theoretic numerical
results (29; 31).
In this work we will review this physical problem, focusing on the latest problems addressed
by the authors on this topic, where a non-uniform heating is considered in different
geometrical configurations, and we will show the relevant results obtained, some of them
in the context of interesting atmospheric and geophysical phenomena (30; 36; 37).

5



2 Will-be-set-by-IN-TECH

2. Theoretical formulation of the problem

The physical set-up (see figure 1) consists of a horizontal fluid layer in a rectangular domain
(19; 45) or a cylindrical annulus (18; 25; 28) between two vertical walls at r = a and r = a + l.
The depth of the domain is d (z coordinate). At z = 0 the imposed temperature gradient takes
the value Tmax at a and the value Tmin at the outer part (a + l). The upper surface is at
temperature T = T0. We define�Tv = Tmax − T0,�Th = Tmax − Tmin and δ = �Th/�Tv.
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Fig. 1. Physical setup for the cylindrical annulus.

From now on we will consider an annular domain, therefore cylindrical coordinates will
be used in the following. The formulation in a rectangular domain and coordinates would
be similar. In the governing equations, u = (ur, uφ, uz) is the velocity field, T is the
temperature, p is the pressure, r is the radial coordinate, and t is the time. They are
expressed in dimensionless form after rescaling: r′ = r/d, t′ = κt/d2, u′ = du/κ, p′ =
d2p/ (ρ0κν) , Θ = (T − T0) /�Tv. Here r is the position vector, κ the thermal diffusivity, ν the
kinematic viscosity of the liquid, and ρ0 the mean density at temperature T0. The domain is
[ā, ā + Γ]× [0, 1]× [0, 2π] where Γ = l/d is the aspect ratio and ā = a/d.
The system evolves according to the mass balance, energy conservation and momentum
equations, which in dimensionless form (with primes now omitted) are,

∇ · u = 0, (1)

∂tΘ + u · ∇Θ = ∇2Θ, (2)

∂tu + (u · ∇) u = Pr
(
−∇p +∇2u + RΘez

)
, (3)
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where the operators and fields are expressed in cylindrical coordinates and the
Oberbeck-Boussinesq approximation has been used (25), i.e. density is constant except in the
term of gravity, where a linear dependence on temperature is considered. Here ez is the unit
vector in the z direction. The following dimensionless numbers have been introduced: the
Prandtl number Pr = ν/κ, and the Rayleigh number R = gα�Td3/κν, which represents the
effect of buoyancy and in which α is the thermal expansion coefficient and g the gravitational
acceleration. In the case of variable viscosity the laplacian operator in Eq. (3) takes the form

div
(

ν(Θ)
ν0
· (∇u + (∇u)t)), where ν(Θ) = ν0e−ηRΘ.

2.1 Contained fluid
Regarding boundary conditions, several conditions can be considered such as that one where
flow through the boundaries is not permitted. For instance at the lateral walls r = ā and
r = ā + Γ the velocity is zero and an insulating wall is considered,

ur = uφ = ∂ruz = ∂rΘ = 0, on r = ā and r = ā + Γ. (4)

On the top surface, the vertical velocity is zero, the normal derivatives of the rest of
components of the velocity are zero and the temperature is T = T0, that after rescaling become,

∂zur = ∂zuφ = uz = Θ = 0, on z = 1, (5)

and at the bottom
ur = uφ = uz = 0, on z = 0. (6)

For temperature at the bottom we consider a constant horizontal temperature difference, i.e.
a linear profile. Here the horizontal temperature gradient appears,

Θ = θ1(r) on z = 0. (7)

with θ1(r) = 1− rδ/Γ and a second order polynomial which matches the linear profile such
that ∂rθ1(r) = 0 on r = ā and r = ā + Γ.
The dimensionless equations and boundary conditions contain five external parameters:
R, Γ, Pr, δ, and η.

2.2 Not contained fluid
Regarding boundary conditions, several conditions can be considered like allowing flow
through the boundaries. At the lateral inner wall r = ā the velocity is zero and an insulating
wall is considered,

ur = uφ = uz = ∂rΘ = 0, on r = ā. (8)

At r = ā + Γ, the lateral outer wall, a constant radial velocity is assumed and an insulating
wall is considered,

∂rur = ∂ruφ = ∂ruz = ∂rΘ = 0, on r = ā + Γ. (9)

On the top surface, the velocity is zero and the temperature is T = T0, that after rescaling
become,

ur = uφ = uz = Θ = 0, on z = 1, (10)
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4 Will-be-set-by-IN-TECH

and at the bottom
ur = ∂zuφ = uz = 0, on z = 0. (11)

For temperature at the bottomwe consider a variable horizontal temperature gradient through
imposing a Gaussian profile as in Ref. (28),

Θ = 1− δ(e(
1
β )

2

− e(
1
β−( r−ā

Γ )2 1
β )

2
)/(e(

1
β )

2 − 1) on z = 0. (12)

The dimensionless equations and boundary conditions contain five external parameters:
R, Γ, Pr, δ, and β.

3. Metodology: search for solutions and their linear stability

We look for stationary axisymmetric solutions of the problem, then, the equations to be solved
are

∇∗ · u = 0, (13)

u · ∇∗Θ = ∇∗2Θ, (14)

(u · ∇∗) u = Pr
(
−∇∗p +∇∗2u + RΘez

)
, (15)

where ∇∗ = (∂r, 0, ∂z), together with the corresponding boundary conditions.
The time independent solution Ub(r, z) to the stationary problem obtained from equations
(1)-(3) by eliminating the time dependence, is called basic state. It is a non-conductive state
(u �= 0) as soon as δ �= 0. The basic state is considered to be axisymmetric and therefore
depends only on r − z coordinates (i.e. all φ derivatives are zero). The velocity field of the
basic flow is restricted to u = (ur, uφ = 0, uz).
A linear stability analysis of the stationary solutions is performed. Fixed (Γ, δ, Pr, β), the
solution U(r, z, t) = (u,Θ, p)(r, z, t) of (1)-(3) at given R is expressed as

U(r, z, t) = Ub(r, z) + Ũ(r, z)eikφ+λt, (16)

where Ub(r, z) is the base flow for the given (R, Γ, δ, Pr, β) and Ũ(r, z) refers to the
perturbation. We have considered Fourier mode expansions in the angular direction, because
along it boundary conditions are periodic. Introducing (16) into the full system (1)-(3) and
linearizing the resulting system, the following eigenvalue problem in λ is obtained:

∇k · Ũ = 0, (17)

λΘ̃ + Ũ · ∇kΘb + Ub · ∇kΘ̃ = (∇k)2Θ̃, (18)

λŨ +
(

Ũ · ∇k
)

Ub +
(

Ub · ∇k
)

Ũ = Pr
(
−∇k p̃ + (∇k)2Ũ + RΘ̃ez

)
, (19)

where ∇k = (∂r, ik, ∂z), with the corresponding boundary conditions.
The instability is achieved when the real part of the eigenvalue with maximum real part,
λmax(R), changes from a negative value to a positive one as R increases, for a specific wave
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number k. The critical value of R for which λmax(R, k) = 0 is denoted by Rc and the critical
wave number, minimum k for which the bifurcation occurs, by kc.

3.1 Numerical methods
The numerical method is described in detail and tested in Refs. (25; 28). The nonlinearities in
the basic state problem are solved with a Newton method. Each step of the Newton method
and the linear stability analysis have been numerically solved with a Chebyshev collocation
method as explained in Refs. (28; 39; 48). The problem is posed in the primitive variables
formulation, and the use of the same order approximations for velocity and pressure in the
Chebyshev collocation procedure introduces spurious modes for pressure that are solved
by adding convenient boundary conditions (43; 44). In the resulting linear problems any
unknown field x is expanded in Chebyshev polynomials

xLN =
L−1

∑
l=0

N−1

∑
n=0

ax
lnTl(r)Tn(z). (20)

The corresponding expansions for the four different fields are introduced into the Newton
linearized version of equations (13)-(15) and the corresponding boundary conditions and
evaluated at the Chebysehv Gauss-Lobatto collocation points (rj, zi),

rj = cos
((

j− 1
L− 1

− 1
)

π

)
, j = 1, ..., L. (21)

zi = cos
((

i− 1
N − 1

− 1
)

π

)
, i = 1, ..., N. (22)

Some care is necessary in the evaluation rules at the boundaries as explained in Refs. (28; 48).
At each iteration of the Newton method a linear system of the form AX = B is derived, where
X is a vector containing P = 4× L× N unknowns and A is a full rank matrix of order P× P.
This can be solved with standard routines. The algorithm starts with an approximation to
the solution x0,LN and the iteration procedure is applied until the stop criterion ||xs+1,LN −
xs,LN || < 10−9 is satisfied.
The same discretization is used for the eigenvalue problem (17)-(19) with the corresponding
boundary conditions. In this way it is transformed into its discrete form by expanding the
perturbations in a truncated series of Chebyshev polynomials (20) as performed for the basic
state. The evaluation rules are detailed in Ref. (48). Therefore, the eigenvalue problem in its
discrete form is,

Cw = σBw, (23)

where w is a vector which contains Q unknowns and C and B are Q× Q matrices, with Q =
5× L× N.
QZ or Arnoldi algorithms are used to solve the eigenvalue problem (42). σ are the eigenvalues
and w are coefficients in the Chebyshev basis of the corresponding eigenfunctions.
The discrete eigenvalue problem (23) has a finite number of eigenvalues σi. The stability
condition must now be imposed upon σmax where σmax = max(Re(σi)), bearing in mind
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that if σmax < 0 the stationary state is stable while if σmax > 0 the stationary state becomes
unstable. The control or bifurcation parameter is the Rayleigh number R. For fixed values of
the parameters, in those cases Γ, Pr, δ, β or η, the critical values are the minimum value of Rc
for which there exists a value of k, kc, such that σ(Rc, kc) = 0.
In order to test convergence of the method we include, as an example, the calculation of the
critical value of the bifurcation parameter, Rc, and the critical wave number, kc, for different
order expansions in the Chebyshev approximation in the contained fluid case. And we
benchmark the method and code to ensure the correctness of the results. Table 1 shows these
results for the contained fluid case. When the orders L and N are increased, the critical values
tend to a determined value, convergence is very good and for L = 24 and N = 14 the results
are sufficiently accurate, in fact they are exact to the thousandth. The values L = 24 and
N = 14 can be considered in the computations. In a convergence test comparing the critical
Rc obtained at different order expansions, the relative difference between the expansions at
26 × 18 and 24 × 16 is found to be less than 10−4. There are three significant digits in this
calculation. The benchmarking of the method can be done with results in Ref. (48). The
critical wave number for Γ = 2.936, η = 0.0862 and δ = 0 is kc = 0, so for these values of the
parameters the results reported in Ref. (48) are recovered. For this value of the aspect ratio
the bifurcation corresponds to a mode 2 in the x direction and the bifurcation takes place at
the same value Rc = 73.5.

N = 12 N = 14 N = 16 N = 18

L = 14 (2.5, 1203.91) (2.5, 1210.00) (2.5, 1212.73) (2.5, 1208.70)
L = 16 (2.5, 1220.00) (2.5, 1214.00) (2.5, 1214.92) (2.5, 1214.94)
L = 18 (2.5, 1220.10) (2.5, 1225.00) (2.5, 1224.92) (2.5, 1224.07)
L = 20 (2.5, 1220.10) (2.5, 1224.15) (2.5, 1224.90) (2.5, 1224.90)
L = 22 (2.5, 1220.20) (2.5, 1224.92) (2.5, 1224.92) (2.5, 1224.92)
L = 24 (2.5, 1220.20) (2.5, 1225.00) (2.5, 1225.00) (2.5, 1224.92)
L = 26 (2.5, 1220.20) (2.5, 1225.00) (2.5, 1224.92) (2.5, 1224.92)

Table 1. (kc, Rc) for different order expansions in L and N in the Chebyshev expansion (20)
for a 3D fluid with constant viscosity, η = 0, aspect ratio Γ = 2.936 and δ = 0.1.

4. Numerical solutions with geophysical interest

4.1 Contained fluid
In references of small cells the case of large viscosity (or Prandlt number) could be considered
as an approximation to mantle convection. The largest value of Prandlt number considered
in the experiments is Pr = 60 in Ref. (52), in this case boundary layer waves are observed.
Numerical results with infinite Pr number are reported in (45). In this case only stationary
patterns of rolls perpendicular to the temperature gradient are observed. Also it is of interest
the case of variable viscosity dependent on temperature, this case is plenty of references,
but all of them consider homogeneous heating without horizontal temperature gradients
(35; 36; 47). The only reference in which those gradients are taken into account in a variable
viscosity case is (19). Some numerical solutions obtained in the case considered in Ref. (19) are
presented in figure 2 at infinite Pr number, aspect ratio Γ = 2.936, η = 0.0862, R = 72.650 and
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Fig. 2. Basic state for Γ = 2.936, η = 0.0862, δ = 0.1 and R = 72.65. On the left velocity field
u. On the right Isotherms of temperature Θ.

δ = 0.1. Figure 2 shows that the structure of the velocity field is more localized close to the
zone where the temperature is higher, i.e, at r = −1. The presence of the horizontal gradient
generates convective basic states, that were conductive without the horizontal gradients. In
Ref. (19) it is shown the fluid motion is produced in the region where viscosity is lower.
Regarding the instabilities, in the case of large Γ the influence of the horizontal temperature
gradient is considerable, the problem is nearly two-dimensional (2D) in the uniform heating
case, but it is three-dimensional (3D)with the horizontal temperature gradient. Figure 3 shows
the growing mode or eigenfunction in the case Γ = 2.936, δ = 0 and η = 0.0862, the critical
wave number in this case is kc = 0, so a 2D structure appears after the bifurcation. Figure
4 shows the growing mode or eigenfunction in the same case as before, but with horizontal
gradient δ = 0.1, the critical wave number in this case is kc = 1.7, so a 3D structure appears
after the bifurcation. Also we can observe from figures 3 and 4 that the bifurcating pattern is
more structured in the r− z plane for δ = 0 and becomes more structured in the y− z plane for
δ �= 0. Hence, a horizontal temperature gradient gives rise to thermal plumes which bifurcate
to totally 3D structures.
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Fig. 3. Growing mode or eigenfunction at the instability threshold for Γ = 2.936, δ = 0,
η = 0.0862 and Rc = 72.504. On the left velocity field u. On the right Isotherms of
temperature Θ.

4.2 Not contained fluid
This case is plenty of references of direct simulations solving numerically the partial
differential equations (31; 34). But under the instability or bifurcation perspective the case
in which the fluid can flow through the boundaries is only treated in reference (29). In that
paper we show that a vortical structure appears after a stationary bifurcation of a state without
angular velocity.

87
Influence of Horizontal Temperature Gradients 
on Convective Instabilities with Geophysical Interest



8 Will-be-set-by-IN-TECH

r

z

r

z

Fig. 4. Growing mode or eigenfunction at the instability threshold for Γ = 2.936, δ = 0.1,
η = 0.0862 and Rc = 72.650. On the left velocity field u. On the right Isotherms of
temperature Θ.

A numerical solution obtained in the problem considered in Ref. (29) is presented in figure 5.
Figure 5 shows the profiles of temperature, pressure and velocity components corresponding
to the clockwise vortex for Pr = 0.7, Γ = 0.5 and δ = 10 at R = 4367. This vortex appears after
a bifurcation of a basic state with zero azimuthal velocity (see Ref. (29)). The main feature of
the new steady flow emerging from the convective instability with kc = 0 and ũφ �= 0 is a
non-zero azimuthal velocity component. The fluid inside the annulus begins to move in the
azimuthal direction, rotating around the inner cylinder.
The linear stability analysis of the vortical structures shows that there is a wide range of
parameters for which this state is stable.
The track of a particle in the vortex can be obtained by integrating the evolution of the element
of fluid which follows the velocity field,

dr
dt

= ur(r, z), (24)

dφ

dt
= uφ(r, z), (25)

dz
dt

= uz(r, z). (26)

In our simulations we observe a spiral upward motion of the particle around the inner
cylinder, which implies a transport of mass in the azimuthal direction. Starting from below,
the particle goes up, moves towards the inner cylinder and rotates around it. The combination
of these movements gives the spiral trajectory shown in figure 6, where the trajectory of a
particle in the fluid is presented for Γ = 0.5, δ = 10 and R = 4367 at two different initial
conditions. Starting from a point close to the bottom plate but near the inner cylinder, where
the effect of uz is stronger than the effect of uφ, the particle goes up very fast without much
turning around the inner cylinder. This can be appreciated in figure 6 a) where the starting
point considered is (r = 0.085, z = 0.05, φ = 0) in [0.06, 0.56] × [0, 1] × [0, 2π]. When the
particle reaches the upper part of the structure it describes wider circles around the inner
cylinder as ur becomes positive and uz is very small at those levels (see figure 5). Figure
6 b) shows the effect of localizing the starting point further from the inner cylinder, e.g. at
(r = 0.31, z = 0.05, φ = 0). In this case, the effect of uφ is stronger and the spiral up motion of
the particle starts as soon as the particle begins to move.
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Fig. 5. Clockwise vortex at Γ = 0.5, δ = 10 and R = 4367. a) Isotherms of Θ; b) meridional
velocity (ur, uz); c) contour plot of the pressure p ; d) contour plot of the radial velocity
component ur; e) contour plot of the vertical velocity component uz; f) contour plot of the
azimuthal velocity component uφ. The contours correspond to equally spaced values within
their ranges of [-9:1] for Θ, [-0.02:20.4] ·103 for p, [-9.3:4.3] for ur, [-0.6:14.5] for uz and
[-26.1:0] for uφ. The pressure p is determined up to a constant.

t = 0
t = 0

a) b)

Fig. 6. Track of a particle in the fluid for the stable clockwise vortex. The values of the
parameters are Γ = 0.5, δ = 10 and R = 4367. a) Starting point at (r = 0.085, z = 0.05, φ = 0);
b) starting point at (r = 0.31, z = 0.05, φ = 0).
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5. Discusion

5.1 Contained fluid
Regarding the numerical solutions found in this case, the horizontal temperature gradient
generates convective states and tends to concentrate motion near the warmer wall. This fact
coincides with experiments in Refs. (38; 40; 41) and is consistent with previous numerical
results reported in (27; 45). The temperature dependent viscosity localizes motion near the
region of lower viscosity, i.e., the bottom plate. This also coincides with experiments in
Refs. (36; 46; 49) and numerical results in Ref. (48). It is remarkable that the horizontal
temperature gradient favours a threedimensional structure after the bifurcation, while the
pattern continues being axisymmetric after the bifurcation in the only vertical gradient case.

5.2 Not contained fluid
As detailed in Ref. (48) we found qualitative similarities between the vortical structures
computed numerically and somemeteorological phenomena such as dust devils and cyclones.
One of the main characteristics of dust devils is a low-pressure region in the center of the
dust devil which coincides with the dust devil’s warm core (33). This is also observed in
our numerical vortices (see figure 5 c). Regarding temperature, in dust devils, the maximum
temperature deviation from the environment temperature (i.e. the temperature furthest from
the dust devil center) occurs at the lowest levels. This feature is observed in the temperature
profile of our vortices.
The experimental measures provided in Ref. (33) show that there is radial inflow at the lower
levels of the dust devil and radial outflow in the upper levels. It is also shown that the vertical
velocity reaches highest values and then falls off rapidly as the radius is increased. These
features are appreciated in the profile of ur and uz shown in figures 5 d) and e).
The trajectory of particles around the inner cylinder described in this section appears to be
very similar to the trajectory of particles of air (or dust) in a dust devil, characterized by a
spiral up motion (33).
Other more complex meteorological phenomena such as cyclones also present these structural
characteristics. It is known that the center (eye) of a cyclone is the area of lowest atmospheric
pressure in the region, which corresponds to a warm core in some kind of cyclones (e.g.
tropical and mesoscale) (31; 34). This coincides with that observed in figures 5 a) and 5 b).
Regarding the motion in cyclones, it is observed the inward flow next to the surface, strong
upward motion in the eyewall and outflow in a layer near the top of the storm (31; 34).
This characteristic is described in the combined effect of the radial and vertical velocity
components observed in our vortices as pointed out above (see figures figures 5 c, d) and e)).
In cyclones, a counter-clockwise motion (clockwise in the southern hemisphere) is observed
around the center of the storm, stronger just above the surface in a ring around the center and
sligther as we go up from the surface (31; 34). That coincides with the effect of the azimuthal
velocity component observed in the vortices we have computed numerically responsible for
the movement of the particles around the inner cylinder.

6. Conclusions

In this work we have reviewed the influence of horizontal temperature gradients on
convective instabilities, focusing on results with geophysical interest.
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We have distinguished two cases, a first one where the fluid is simply contained in a domain,
and a second one where the fluid can flow throughout the boundaries.
In the first case three subcases can be grouped. The case corresponding to small cells and
small Pr number displays stationary and oscillatory instabilities depending on the multiple
parameters present in the problem: properties of the fluid, surface tension effects, heat
exchange with the atmosphere, aspect ratio, dependence of viscosity with temperature, etc.
This problem has been treated from experimental, theoretical and numerical points of view.
The cases corresponding to small cells and large or infinite Pr number are closer to mantle
convection. Boundary layer waves are observed in experiments and 3D stationary patterns
of rolls perpendicular to the temperature gradient appear numerically. Finally for the case of
infinite Pr number with temperature dependent viscosity, the closest to mantle convection, 3D
stationary patterns concentrated in the region of lower viscosity and waves for larger values
of the R number appear. Summarizing, horizontal temperature gradients favour the presence
of waves and the totally three dimensional patterns.
The problem where the fluid can flow throughout the boundaries has been treated usually
as direct numerical simulations. For the first time it has been studied under the perspective
of instabilities or bifurcations in Ref. (29). In this reference vortical solutions, very similar
to those found for some atmospheric phenomena such as dust devils or hurricanes, appear
after a stationary bifurcation. This is a powerfull and simple explanation of those atmospheric
phenomena as an instability.
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1. Introduction

The internal motion through porous chambers generated by wall-normal injection has
received considerable attention in the second half of the twentieth century. This may be
attributed to its relevance to a large number of phenomenological applications. In actuality,
the motion of fluids driven by either wall injection or suction can be used to describe a
variety of practical problems that encompass a wide range of industries and research areas.
To name a few, these include: paper manufacturing (Taylor, 1956), ablation or sweat cooling
(Peng & Yuan, 1965; Yuan & Finkelstein, 1958), boundary layer control (Acrivos, 1962; Libby,
1962; Libby & Pierucci, 1964), peristaltic pumping (Fung & Yih, 1968; Uchida & Aoki, 1977),
gaseous diffusion or filtration, isotope separation (Berman, 1953; 1958a;b), irrigation, and the
mean flow modeling of both solid (Culick, 1966; Zhou & Majdalani, 2002) and hybrid rockets
(Majdalani, 2007a).
Wall injected flows are initiated by the injection or suction of a fluid across the boundaries
of a ducted region having an arbitrary shape and cross-sectional area. This is illustrated in
Figure 1 for the special cases of porous channels and tubes. In general, one is required to
solve a reduced-order form of the equations of motion for a bounded fluid in order to retrieve
a meaningful solution (Terrill & Thomas, 1969). For a general three dimensional setting,
this effort leads to a formidable task that is often intractable. However, when simplifying
assumptions are invoked, as in the case of an incompressible stream in a channel or tube with
uniform injection or suction, Berman (1953) has shown that the Navier-Stokes equations can
be reduced to a fourth order nonlinear ODE that may be susceptible to both analytical and
numerical treatment. Berman’s approach is based on a spatial similarity that transforms the
Navier-Stokes equations to a more manageable ODE by assuming that the transverse velocity
component v is axially invariant; this immediately translates into a streamfunction that varies
linearly in the streamwise direction, i.e. ψ(x, y) = xF(y) (Berman, 1953; White, 2005). Then by
considering the limiting case of a small suction Reynolds number, Re ∼ ε, Berman employs
a regular perturbation series in Re to obtain an approximate expansion for the mean flow
function F(y). Berman’s Reynolds number, Re = Uwa/ν , is based on the injection speed at
the wall, Uw, and the channel half height, a. As for the case of large suction, Berman (1953)
first remarks that the limit of the reduced ODE cannot be used to obtain a solution owing
to the reduction in order of the governing equation. Later, Sellars (1955) and Terrill (1964)
invoke a procedure that permits the extraction of a closed-form analytical approximation for
the large Re case by implementing a coordinate transformation that takes into account the
spatial relocation of the boundary layer to the sidewall region.
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(a) Injection driven porous channel
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(b) Injection driven porous tube

Fig. 1. Schematics of porous channels and tubes in which motion is sustained through
wall-normal injection.

It is widely believed that Berman (1953) was among the earliest to examine the problem of
laminar viscous flow bounded by porous surfaces (see Dauenhauer & Majdalani, 2003; Zhou
& Majdalani, 2002). Although his first similarity transformation only applied to a planar
configuration with wall suction, it has set forth the foundation for a number of follow-up
investigations that relied on either analytical or numerical techniques to explore a variety of
geometric configurations with either injection, suction, or both (Proudman, 1960).
Chronologically, these start with Sellars (1955) who extended Berman’s solution to very large
suction Reynolds numbers. He accomplished this by relaxing the no-slip boundary condition
that became immaterial under this limiting condition. At the outset, he extracted a leading
order approximation that corresponded to uniform axial motion, i.e. F(y) = y. Sellars
integrated the ensuing equation based on his leading order approximation. His model thus
uncovered the outer solution of this problem when viewed from a boundary layer perspective.
Sellars’ identification of a thin boundary layer at the wall for the large suction case would later
prove crucial in subsequent developments of this problem.
Of particular interest to this chapter is a classic article by Taylor (1956) in which he derived an
inviscid rotational solution for both planar and axisymmetric channel flow configurations, in
addition to cones and wedges. The absence of viscosity in his model led to approximations
that were consistent with Berman’s leading order solution of the Navier-Stokes equations
expressed at large injection Reynolds numbers, i.e. F(y) = sin( 1

2 πy). The most peculiar
characteristic of Taylor’s mean flow profile stood in its ability to satisfy the no-slip boundary
condition at the sidewall despite its inviscid nature. This could be attributed to its wall-normal
injection that disallowed any axial velocity contribution along the porous boundary.
Returning to the viscous flow problem in a porous channel, Yuan (1956) may have been the
first to develop a solution for moderate to large Reynolds numbers and either suction or
injection. His solution asymptotically reproduced Taylor’s in the limit of a large injection
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Reynolds number. However, Yuan’s model suffered from a singularity that appeared in the
third derivative of the mean flow function F(y) taken at the centerline. This of course signaled
the presence of a thin boundary layer that necessitated special treatment. The corresponding
boundary layer would later be captured by Terrill (1965) who also described an insightful
technique to solve this problem numerically.
In the interim, Berman (1958a) published his second work in which he extended the original
planar problem to various geometric settings. This included the familiar case of a straight
axisymmetric tube with permeable walls. Almost concurrently, White et al. (1958) advanced
a series approximation to the porous channel problem for all ranges of the Reynolds number.
However, White and co-workers employed a power series expansion that was centered
around Re = 0. They also supplied a numerical solution to this problem. Despite the accuracy
of their technique, their power series depended on two arbitrary constants that could only be
determined numerically through a trial and error procedure. According to Terrill (1964), their
method could be viewed as suitable for intermediate values of Re (15 ≤ Re ≤ 35). Otherwise,
a transformation of the governing equation could be more effective at achieving direct
numerical integration. Due to the penalty involved in evaluating the analytical constants of
the attendant power series, this particular approach would be later abandoned. Nonetheless,
it remained somewhat unique in its ability to provide a single analytical approximation that
applied over the entire range of Re, a feat that standard perturbation methods failed to
accomplish.
Along similar lines, Terrill (Terrill, 1964; 1965) compiled a comprehensive and detailed résumé
of the perturbation solutions of this problem over all ranges of the Reynolds number. Therein,
he derived and discussed several limiting cases such as Re = 0, |Re| � 1, Re → +∞, Re →
−∞, and compared the various solutions with numerical simulations based on Runge–Kutta
integration. For the numerical integration scheme, he introduced a transformation that would
lead to a direct numerical solution with no need for predictor-corrector steps or shooting. On
the flip side, his technique did not allow the pre-selection of the Reynolds number but rather
the post-determination of Re at the conclusion of the numerical procedure. Before leaving this
topic, we also note the work of Eckert et al. (1957) who, as far as the authors could verify, were
the first to present a numerical solution for the laminar viscous motion in a porous channel.
As far as stability is concerned, the variety of analytical models considered for the planar
case appeared to be both unique and stable (Terrill & Thomas, 1969; White, 2005). However,
Robinson (1976) reported that dual solutions could exist for large suction while Zaturska
et al. (1988) furnished a detailed stability analysis that rigorously showed that (at least) three
types of solutions could co-exist. Even more intricate structures would arise in the case of
axisymmetric flow in a porous tube. In this context, Terrill & Thomas (1969) have shown that,
at least, dual solutions existed for the entire range of injection and suction Reynolds numbers
while no steady solutions could be identified for 2.3 < Re < 9.1. At the time of this writing,
the issue of stability of wall-injected flows remains an open area of investigation especially
among applied mathematicians and fluid dynamicists.

1.1 Relevance to propulsion systems
In propulsive applications involving solid and hybrid rocket motors, modeling the mean flow
proves to be important for a variety of reasons (Culick, 2006). The instantaneous flow field
plays a key role in describing acoustic instability, particle-mean flow interactions, erosive
burning, nozzle erosion, and thrust performance. The traditional modus operandi is to
decompose the instantaneous motion into a steady average flow and an amalgam of unsteady
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wave contributions (Chedevergne et al., 2007; Culick, 2006; Majdalani, 2009). In this context,
the mean flow represents the bulk motion of the gases and can be approximated by the
steady-state solution for a porous tube or channel with wall-normal injection. As for the
unsteady field, it refers to any perturbed disturbance that propagates within the chamber.
Typical fluctuations are attributed to acoustic, vorticity, entropy, and hydrodynamic instability
waves (Chu & Kovásznay, 1958). The importance of the mean flow is therefore evident due to
the tight coupling between the steady and unsteady motions.
Although the earliest studies of solid rocket motor (SRM) stability treated the motors as
porous enclosures, they failed to consider a suitable mean flow field. For example, the first
theoretical study that explored the acoustic instability of rockets may be attributed to Grad
(1949) (see Culick, 2006, for greater detail). However, Grad assumed that the mean flow
could be ignored as in the case of a stagnant medium, thus limiting his analysis to that of
aeroacoustic instability in a cylindrical chamber with no mean flow motion.
Nearly a decade later, the work of McClure and coworkers would prove instrumental in the
understanding of rocket motor stability, especially in the development of the energy balance
framework. However, principal efforts in this direction have focused on the thin region near
the injecting surface (Hart & McClure, 1965; Hart et al., 1960; Hart & Cantrell, 1963; Hart &
McClure, 1959; McClure et al., 1960). In fact, McClure et al. (1963) may have been the first to
employ a mean flow approximation in their analysis of the aeroacoustic field in SRMs. Their
model of choice corresponded to the irrotational motion of an ideal gas in a porous cylinder or
between two parallel porous plates. It hence constituted a substantial improvement over the
stagnation flow model and, for the first time, succeeded in identifying the intimate coupling
between the mean flow and the unsteady wave motion.
It was not until Culick (1966) that a robust representation of the mean flow in circular port
motors would be introduced. Despite its inviscid nature, Culick’s model was rotational
and could satisfy the no-slip requirement at the sidewall. The profile itself coincided with
that obtained by Taylor (1956) a decade earlier, albeit in an entirely different application
(i.e. paper manufacturing). Culick (1966) derived his solution in the context of a propulsive
application that quickly proved to be quintessential to several combustion instability studies,
particle-mean-flow interactions, turbulence characterization, and other related investigations
of solid propellant rocket motors. It is usually referred to as the Taylor–Culick profile and
remains one of the most cited models in rocket motor analysis. For example, Chedevergne
et al. (2006), Abu-Irshaid et al. (2007), Griffond et al. (2000), Beddini (1986) and Flandro &
Majdalani (2003) made extensive use of the Taylor–Culick model as a basis for their instability
work.

1.2 Beyond Culick’s solution
Going beyond the Taylor-Culick solution, Majdalani and coworkers have explored a variety
of avenues that extended the classic model by providing higher order approximations that
could take into account additional factors that are omitted in the inviscid formulation. These
include the effects of viscosity, grain taper, wall regression, compressibility, and headwall
injection. For example, the sensitivity of the mean flow to viscosity is discussed by Majdalani
& Akiki (2010) whereas the effects of tapering of internal bores are addressed by Saad et al.
(2006) for the rectangular port slab geometry and by Sams et al. (2007) for the internal burning
cylinder with circular cross-section. Other improvements include the work of Kurdyumov
(2006) who extended the Taylor–Culick solution to chambers with irregular cross-sections,
such as those with a star-shaped perforation. Furthermore, Tsangaris et al. (2007) generalized
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Terrill’s treatment of the porous tube to include unsteady injection or suction at the sidewall.
In the same vein, Erdogan & Imrak (2008) presented a laminar solution for the flow in a porous
tube. Their solution was obtained by expanding the velocity field as a series of modified
Bessel functions of order n. As for the problem involving wall regression, it was tackled by
Dauenhauer & Majdalani (2003), Zhou & Majdalani (2002), and Majdalani & Zhou (2003) for
the slab with regressing sidewall, and by Goto & Uchida (1990) and Majdalani et al. (2002)
for the internal burning cylinder with expanding walls (see also Majdalani et al., 2009, for an
error-free form).
The next noteworthy improvement in this area consists of the compressible Taylor–Culick
profile that was first presented in multiple dimensions by Majdalani (2007b). His solution
faithfully retained the essential ingredients of Culick’s model, yet fully incorporated the effects
of compressibility. This was accomplished through the use of a Rayleigh-Janzen expansion
jointly with the vorticity-streamfunction approach for a compressible fluid. In asymptotic
theory, the Rayleigh-Janzen expansion refers to a regular perturbation expansion in even
powers of the Mach number that is ideally suited for the treatment of high speed flows
(see Janzen, 1913; Rayleigh, 1916). A similar and equally impactful treatment of the planar
configuration was subsequently presented by Maicke & Majdalani (2008) for the compressible
Taylor flow analogue. Both analyses give rise to velocity fields that exhibit steep streamline
curvatures that are consistent with numerical simulations of the compressible Navier-Stokes
equations.
As we move closer to the central topic of this chapter, we consider recent work in which
the Taylor–Culick solution is reconstructed for the case of solid rocket motors with headwall
injection or hybrid motors with a large headwall-to-sidewall velocity ratio (Majdalani, 2007a).
The corresponding problem is analyzed in both axisymmetric and planar configurations by
Majdalani & Saad (2007b) and Saad & Majdalani (2009b), respectively. This will be the topic of
Section 2 where the solutions for the Taylor–Culick flow with arbitrary headwall injection
are derived and compared to steady state, second order accurate inviscid computations.
In subsequent work, Majdalani & Saad (2007a) and Saad & Majdalani (2010) manage to
introduce a variational procedure based on Lagrangian multipliers to identify solutions of
the Taylor–Culick type with varying kinetic energies. As it will be seen in Section 3, these will
help to uncover a wide array of motions ranging from purely irrotational to highly rotational
fields. The same approach is later applied to slab rocket motors (Saad & Majdalani, 2008a) and
to swirl-driven cyclonic chambers with either single (Saad & Majdalani, 2008b) or multiple
mantles (Saad & Majdalani, 2009a). In what follows, the main emphasis will be placed on the
motion driven by wall-normal injection in a porous, axisymmetric tube.

2. Rotational models with headwall injection

2.1 Arbitrary injection
In this section, we present a model for the mean flow in simulated solid or hybrid rocket
motors with headwall injection. Our approach is based on a technique introduced by
Majdalani (2007a) and Majdalani & Saad (2007b). The ability to account for arbitrary headwall
injection will extend the Taylor-Culick approximation to a wider range of problems. For
example, it will enable us to handle both solid and hybrid rocket motors in a unified analysis,
the difference being in the relative magnitudes of the headwall-to-sidewall injection speeds.
Our approach will be based on the vorticity-streamfunction formulation in which the vorticity
transport equation will be used to obtain a functional relation between the streamfunction
and the vorticity. The solution will then be retrieved from the vorticity equation. In the
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Fig. 2. Schematic of an idealized solid rocket motor with sidewall injection.

process, a multitude of injection profiles will be extracted using superposition. Despite the
nonlinearity of the vorticity transport equation near the headwall, it will be shown that the
solution becomes progressively more linear in the downstream direction, a factor that permits
the use of superposition. Incidentally, the linearity of the vorticity-streamfunction relation
used in these studies has been shown by Kurdyumov (2008) to hold true away from the
headwall. Finally, the resulting approximations will be tested using three representative
injection profiles for which comparisons with finite volume CFD simulations of the Euler
equations will be performed.

2.2 Mathematical idealization
A rocket motor can be idealized as a cylindrical chamber of porous length L∗ and radius a
with both a reactive headwall and a nozzleless aft end as shown in Figure 2. The radial and
axial velocities are represented by u∗ and w∗, respectively, while r∗ and z∗ stand for the radial
and axial coordinates used to describe the solution from the headwall to the typical nozzle
attachment point at the chamber outlet. At the headwall, a fluid stream (which may denote an
oxidizer or gaseous propellant mixture) is injected into the chamber at a prescribed velocity
w∗0(r∗). This could be given by

w∗0(r∗) = w∗(r∗, z∗ = 0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W∗
c = const uniform

W∗
c cos( 1

2 πr∗2/a2) cosine
W∗

c [1− (r∗/a)m] laminar and turbulent
W∗

c (1− r∗/a)1/m turbulent

(1)

where W∗
c = w∗(0, 0) is the centerline speed at the headwall (a constant), m is some integer,

and the asterisk denotes a dimensional variable. The incoming stream merges with the cross
flow generated by uniform mass addition along the porous sidewall. Naturally, the sidewall
injection velocity Uw = −u∗(a, z∗) is commensurate with propellant or fuel regression rates.
In hybrids, Uw can be appreciably smaller than W∗

c due to slow fuel pyrolysis; in SRM
analysis, these two values can be identical.

2.2.1 Normalization
It is useful to normalize all recurring variables and operators. This can be done by following
Majdalani & Saad (2007b) and setting
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r =
r∗
a

; z =
z∗
a

; ∇ = a∇∗; p =
p∗

ρU2
w

; ψ =
ψ∗

a2Uw
;

u =
u∗
Uw

; w =
w∗
Uw

; Ω =
Ω∗a
Uw

; Wc =
W∗

c
Uw

; L =
L∗
a

(2)

where starred variables denote dimensional quantities. Note that this normalization applies
to all subsequent developments.

2.2.2 Euler-based formulation
A non-reactive motion may be assumed, prompted by the thin reactive zone above the grain
surface. Following Culick (1966), the flow can be taken to be steady, inviscid, incompressible,
rotational, and axisymmetric. It should be noted that Majdalani (2007b) and Maicke &
Majdalani (2008) have provided compressible Taylor–Culick solutions under isentropic flow
conditions. These confirm the suitability of the present model for a variety of applications in
which the effects of compressibility are small. Chu et al. (2003) and Vyas et al. (2003) have also
demonstrated that the flow field above the thin flame zone may be treated as non-reactive. At
the outset, the normalized Euler equations with no swirl can be written as

1
r

∂(ru)
∂r

+
∂w
∂z

= 0 (3a)

u
∂u
∂r

+ w
∂u
∂z

= − ∂p
∂r

(3b)

u
∂w
∂r

+ w
∂w
∂z

= − ∂p
∂z

(3c)
or, in vector form

∇ · u = 0 (4a)
u · ∇u = −∇p (4b)

One may now invoke the dyadic vector identity u · ∇u ≡ ∇( 1
2 u · u) − u × ∇ × u. Then,

by taking the curl of the resulting expression into (4b), one obtains the vorticity transport
equation for steady, inviscid motion

∇× (u×Ω) = 0 (5)
where

Ω = ∇× u (6)
Finally, four boundary conditions can be prescribed by writing⎧⎪⎪⎪⎨

⎪⎪⎪⎩

u(0, z) = 0 no flow across centerline
w(1, z) = 0 no slip at sidewall
u(1, z) = −1 constant radial inflow at sidewall
w(r, 0) = w0(r) axial inflow at headwall

(7)

where the headwall injection profile may take any of the following plausible forms

w0(r) =

⎧⎪⎨
⎪⎩

Wc = const
Wc cos( 1

2 πr2)

Wc(1− rm)

(8)

Here m is the power-law exponent that may be taken as 2 for laminar and 7 or 8 for
turbulent-like behavior.
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2.3 Vorticity-streamfunction formulation
Continuity is fulfilled by the Stokes streamfunction in cylindrical coordinates when written as

u = − 1
r

∂ψ

∂z
; w =

1
r

∂ψ

∂r
(9)

Having a single nonzero component in the azimuthal direction, the vorticity reduces to

Ω = Ωθeθ ≡ Ωeθ (10)

Its substitution into the vorticity transport equation (5) yields

∂ψ

∂r
∂

∂z

(
Ω
r

)
− ∂ψ

∂z
∂

∂r

(
Ω
r

)
= 0 or

(Ω/r)z

(Ω/r)r
=

ψz

ψr
(11)

where the subscripts denote differentiation with respect to r or z, respectively. Equation (11)
may be satisfied by taking Ω = rF(ψ) since

(Ω/r)z

(Ω/r)r
=

[F(ψ)]z
[F(ψ)]r

=
Fψψz

Fψψr
=

ψz

ψr
(12)

So we follow Culick (1966) and set Ω = C2rψ. Despite the non-uniqueness of this relation, it
enables us to secure (5). At this point, straightforward substitution into the vorticity equation
(6) renders immediately the second-order PDE associated with the Taylor–Culick problem,

∂2ψ

∂z2 +
∂2ψ

∂r2 −
1
r

∂ψ

∂r
+ C2r2ψ = 0 (13)

with the particular set of constraints,

lim
r→0

1
r

∂ψ(r, z)
∂z

= 0 (14a)

∂ ψ(1, z)
∂r

= 0 (14b)

∂ψ(1, z)
∂z

= 1 (14c)

1
r

∂ ψ(r, 0)
∂r

= w0(r) (14d)

By virtue of L’Hôpital’s rule, removing the singularity in (14a) requires that both

∂ψ(0, z)
∂z

= 0 (15a)

∂2 ψ(0, z)
∂r∂z

= 0 (15b)

Being linear, (13) is solvable by separation of variables; it yields

ψ(r, z) = (ᾱz + β̄)[A cos( 1
2 Cr2) + B sin( 1

2 Cr2)] (16)

This expression satisfies (15b) identically. Henceforth, (14a) may be superseded by (15a). We
then proceed to implement the problem’s constraints so that a solution may be realized.
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2.4 Solution by eigenfunction expansion
The application of the boundary conditions must be carefully carried out, preferably in the
order in which they appear. Starting with (15a), we obtain:

∂ψ(0, z)
∂z

= ᾱA cos( 1
2 Cr2) + ᾱB sin( 1

2 Cr2)
∣∣∣
r=0

= 0 (17)

or A = 0. Without loss of generality, we set B = 1 and rewrite (14b) as

∂ ψ(1, z)
∂r

= rC(ᾱz + β̄) cos( 1
2 Cr2)

∣∣∣
r=1

= 0; ∀ z ∈ R+
0 (18)

and so cos( 1
2 C) = 0. This is satisfied by

C = Cn = (2n + 1)π; ∀ n ∈ N0 (19)

Using Cn = (2n + 1)π, we obtain an infinite series solution to (13). This process introduces an
error term in (5) that will be examined in Section 2.6. In the interim, we take

ψn(r, z) = (αnz + βn) sin[(n + 1
2 )πr2] (20)

For convenience, we introduce χn ≡ 1
2 (2n + 1)πr2 so that the total streamfunction may be

compacted into

ψ(r, z) =
∞

∑
n=0

(αnz + βn) sin χn (21)

At this juncture, we apply the sidewall injection condition (14c) to produce

∂ψ(1, z)
∂z

=
∞

∑
n=0

αn sin[(n + 1
2 )π] = 1 or

∞

∑
n=0

(−1)nαn = 1 (22)

This keystone equality encapsulates several possible outcomes depending on the behavior of
αn . One such case corresponds to Taylor’s family of solutions for which

α0 = 1 and αn = 0; ∀n �= 0 (23)

Accordingly, by setting βn = 0, we recover Culick’s original solution

ψ(r, z) = z sin( 1
2 πr2) (24)

Other forms of αn will be discussed in Section 3. At present, we let α0 = 1 and reduce (21) into

ψ(r, z) = z sin( 1
2 πr2) +

∞

∑
n=0

βn sin χn (25)

Lastly, the headwall condition (14d) may be fulfilled through the use of orthogonality. Starting
with

1
r

∂ψ(r, 0)
∂r

= π
∞

∑
n=0

(2n + 1)βn cos χn = w0(r) (26)

one can take advantage of the orthogonality of the cosine function to secure

βn

∫ 1

0
(2n + 1) cos2 χn r dr =

1
π

∫ 1

0
w0(r) cos χn r dr (27)
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Fig. 3. Streamline patterns corresponding to the classic Taylor–Culick profile with no
headwall injection.

or

βn =
4

(2n + 1)π

∫ 1

0
w0(r) cos χn r dr (28)

With βn in hand, the streamfunction is fully determined, namely,

ψ(r, z) = z sin( 1
2 πr2) +

∞

∑
n=0

[
4

(2n + 1)π

∫ 1

0
w0(r) cos χn r dr

]
sin χn (29)

The radial and axial velocities follow and these may be expressed as

u(r) = −r−1 sin( 1
2 πr2);

w(r, z) = πz cos( 1
2 πr2) + π

∞

∑
n=0

(2n + 1)βn cos χn (30)

Interestingly, the radial velocity remains independent of the headwall injection sequence, βn .
Finally, the vorticity may be deduced from

Ω(r, z) = π2rz sin( 1
2 πr2) + π2r

∞

∑
n=0

(2n + 1)2βn sin χn (31)

This extended form of the Taylor–Culick profile represents a solution for an arbitrary headwall
injection pattern w0(r) that may be prescribed by the proper specification of βn through (28).
By way of confirmation, the classical Taylor–Culick solution with inert headwall may be
readily recovered by setting βn = 0 everywhere. The streamline patterns associated with
this historical benchmark are illustrated in Figure 3.

2.5 Axisymmetric headwall injection profiles
The framework may be tested using a variable headwall injection profile. To be consistent
with the underlying flow assumptions, we employ an axisymmetric function to specify the
injection pattern at z = 0, namely,

w0(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Wc = const uniform

Wc cos( 1
2 πr2) half cosine

Wc(1− r2) parabolic

(32)
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These are prescribed by classic profiles used by Berman (1953) (half cosine), Poiseuille (White,
2005), and others (uniform flow).

2.5.1 Uniform injection
In this case, the headwall injection sequence βn collapses into

βn =
4(−1)nWc

π2(2n + 1)2 (33)

whence

ψ(r, z) = z sin( 1
2 πr2) +

4Wc

π2

∞

∑
n=0

(−1)n

(2n + 1)2 sin χn (34)

The axial velocity and vorticity may be easily determined to be

w(r, z) = πz cos( 1
2 πr2) +

4Wc

π

∞

∑
n=0

(−1)n

(2n + 1)
cos χn (35)

Ω(r, z) = π2rz sin( 1
2 πr2) (36)

The character of (34) is illustrated in Figure 4. Using Wc = Uw = 1, a balance between
sidewall and headwall injection causes the streamline originating at the corner (r = 1, z = 0)
to bisect the flow field at an angle of π/4 as shown in Figure 4(b). By concentrating on a thin
region near the sidewall in Figure 4(c), it may be seen that the solution conforms to the stated
boundary conditions. It is also evident that w0(r) = Wc = 1 corresponds to a simulated solid
propellant grain that is burning evenly along its headwall and sidewall boundaries.

2.5.2 Similarity-conforming cosine injection
For the cosine injection profile, we use (28) to obtain

βn =

⎧⎨
⎩

Wc

π
≡ Wh; n = 0

0; otherwise
(37)

Using (9), the streamfunction becomes

ψ(r, z) = (z + Wh) cos( 1
2 πr2) (38)

The streamlines associated with the cosine headwall injection case are depicted in Figure 5.
Their axial velocity and vorticity correspond to

w(r, z) = π(z + Wh) cos( 1
2 πr2);

Ω(r, z) = π2r(z + Wh) sin( 1
2 πr2)

(39)

It should be noted that while the solutions derived for most injection profiles are approximate,
the one corresponding to the similarity-conforming Berman injection will prove to be exact.
This behavior will be discussed in Section 2.6.
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Fig. 4. Streamlines corresponding to uniform headwall injection with Wc = 1.
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Fig. 5. Streamlines corresponding to cosine headwall injection with Wc = 1.

2.5.3 Parabolic injection
For the parabolic, laminar-like profile, one may substitute w0(r) = Wc(1− r2) into (28) and
retrieve

βn =
8Wc

(2n + 1)3π3 (40)
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Fig. 6. Streamlines corresponding to parabolic headwall injection with Wc = 1.

Consequently, the streamfunction, axial velocity, and vorticity may be deduced one-by-one:

ψ(r, z) = z sin( 1
2 πr2) +

8Wc

π3

∞

∑
n=0

1
(2n + 1)3 sin χn (41)

w(r, z) = πz cos( 1
2 πr2) +

8Wc

π2

∞

∑
n=0

1
(2n + 1)2 cos χn (42)

Ω(r, z) = π2rz sin( 1
2 πr2) +

8Wc

π
r

∞

∑
n=0

1
(2n + 1)

sin χn (43)

The streamlines corresponding to this case are shown in Figure 6.

2.6 Nonlinear residual error
To test the accuracy of the solutions presented heretofore, we substitute (25) into (5). Terms
that do not entirely cancel are hereafter referred to as the residual error Q(r, z). It is
straightforward to see that Q may be calculated from

Q(r, z) = ‖∇× u×Ω‖ = − ∂

∂r
(uΩ)− ∂

∂z
(wΩ) (44)

In terms of the streamfunction and the vorticity, we have

Q(r, z) = −Ω
r2

∂ψ

∂z
+

1
r

∂ψ

∂z
∂Ω
∂r
− 1

r
∂ψ

∂r
∂Ω
∂z

(45)

For each eigensolution given by (29), the vorticity transport equation is fulfilled with zero
residual. Using Ω = Ωn = C2

nrψn, it is clear that (45) becomes

Qn = −C2
nψn

r
∂ψn

∂z
+

1
r

∂ψn

∂z
∂

∂r
(C2

nrψn)− 1
r

∂ψn

∂r
∂

∂z
(C2

nrψn)

(46)

= −C2
nψn

r
∂ψn

∂z
+

1
r

∂ψn

∂z
C2

nψn + C2
n

∂ψn

∂z
∂ψn

∂r
− C2

n
∂ψn

∂r
∂ψn

∂z
= 0

It may hence be seen that the summation of (46) over all eigenmodes will be identically zero
if a hypothetical case may be considered for which all eigensolutions coexist independently.
In practice, however, the eigensolutions must be taken collectively, and so coupling between
eigenmodes must be allowed. The total vorticity and streamfunction must be determined and
substituted into the vorticity transport equation. Insertion into (45) requires evaluating

Q = − 1
r2

∞

∑
n=0

Ωn

∞

∑
n=0

∂ψn

∂z
+

1
r

∞

∑
n=0

∂ψn

∂z

∞

∑
n=0

∂Ωn

∂r
− 1

r

∞

∑
n=0

∂ψn

∂r

∞

∑
n=0

∂Ωn

∂z
(47)

107Internal Flows Driven by Wall-Normal Injection



14 Will-be-set-by-IN-TECH

where

⎧⎪⎨
⎪⎩

ψn = (αnz + βn) sin χn;
∂ψn

∂z
= αn sin χn

∂ψn

∂r
= rCn(αnz + βn) cos χn;

∂Ωn

∂z
= rC2

nαn sin χn

(48)

Furthermore, for the Taylor–Culick class of solutions, α0 = 1 and αn = 0, ∀ n �= 0. This leaves
us with

∂ψn

∂z
=

∂ψ0

∂z
= sin( 1

2 πr2);
∂Ωn

∂z
=

∂Ω0

∂z
= C2

0r
∂ψ0

∂z
(49)

Note that the axial derivatives are solely due to the zeroth eigenmode. This reduces (47) into

Q =
∂ψ0

∂z

(
− 1

r2

∞

∑
n=0

Ωn +
1
r

∞

∑
n=0

∂Ωn

∂r
− C2

0

∞

∑
n=0

∂ψn

∂r

)
(50)

Finally, noting that
∂Ωn

∂r
= C2

nψn + C2
nr

∂ψn

∂r
(51)

we retrieve

Q(r) =
∂ψ0

∂z

∞

∑
n=0

(
C2

n − C2
0

) ∂ψn

∂r
= sin( 1

2 πr2) r
∞

∑
n=1

Cnβn(C2
n − C2

0) cos χn (52)

Equation (52) represents the net residual of the vorticity transport equation due to nonlinear
coupling. It is not necessarily zero except for inert (βn = 0, ∀n) or sinusoidal headwall
injection profiles (βn = 0, ∀n ≥ 1). To further explore the behavior of the residual error,
we expand (52) into

Q(r) = 4π3r sin( 1
2 πr2)

∞

∑
n=1

Dn cos
[

1
2 (2n + 1)πr2

]
(53)

where

Dn ≡ Cn

4π3 βn(C2
n − C2

0) ≡ n(n + 1)(2n + 1)βn (54)

Clearly, the residual error vanishes at r = (0, 1) and is otherwise controlled by the behavior
of Dn. This sequence represents the deviation from the exact solution corresponding to the
cosine profile for which C2

n − C2
0 = 0. In the case of no headwall injection, βn = Dn = 0,

thus leading to an exact representation. As Dn → 0, the solutions become more accurate.
Generally, βn �= 0 and so Dn will only vanish when C2

n = C2
0. To illustrate this character, we

consider two examples, namely, those corresponding to parabolic and uniform injection. For
parabolic injection, we find a quickly converging sequence, specifically

Dn,parabolic ∼ n(n + 1)
(2n + 1)2 −−−→n→∞

1
4

(55)

In this case, the residual is sufficiently small, albeit non-vanishing, because of the first few
terms in (55). However, for the uniform flow, we get alternating infinity, namely

Dn,uniform ∼ (−1)n n(n + 1)
(2n + 1)

−−−→
n→∞

±∞ (56)
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In this case, the residual is undefined because the alternating sequence of increasing terms in
(56) diverges. This may be corroborated by the nature of the uniform profile known for its
sharp discontinuity at the sidewall.
In all cases for which the residual converges, the error vanishes along the centerline and at the
chamber sidewall. This grants our model the character of a rational approximation. Moreover,
because the residual remains independent of z, the error that is entailed decreases as we
move away from the headwall. This improvement in the streamwise direction makes the
approximation more suitable for modeling elongated chambers, such as SRMs. Its behavior
near the headwall is consistent with the Taylor–Culick model that is known for its subtle
discontinuity at z = 0. In all cases considered, the core flow approximations become
increasingly more accurate away from the headwall, a condition that is compatible with the
parallel flow assumption used in many stability investigations of solid and hybrid rocket
flow fields. A similar conclusion is reached by Kurdyumov (2008) whose work confirms the
nonlinearity of the vorticity-streamfunction relation in the vicinity of the headwall and its
progressive linearity with successive increases in z.

2.7 Pressure evaluation
The steady momentum equation (4b) may be readily solved for the pressure distribution. One
may start with u · ∇u = −∇p and integrate in two spatial directions to retrieve

p = p0 − 1
2 u · u−

∫
u

∂w
∂r

dz (57)

where p0 = p(0, 0) represents the centerline pressure at the headwall. To ensure a viable
expression for the pressure, the total differential of p must be exact, or

∂2 p
∂r∂z

=
∂2 p
∂z∂r

(58)

This identity stands in fulfillment of Clairaut’s theorem (Clairaut, 1739; 1740). In terms of the
velocity field, (58) yields

u
∂2w
∂r2 + w

∂2w
∂r∂z

− u
r

∂w
∂r

= 0 (59)

In short, (57) will produce an analytical expression for the pressure only when (59) is valid.
For the classic Taylor–Culick solution, (59) is identically satisfied and the pressure can be
integrated into

p(r, z) = p0 − 1
2 π2z2 − 1

2 r−2 sin2( 1
2 πr2) (60)

For the cosine profile, we have

u = −r−1 sin( 1
2 πr2)er + π(z + Wh) cos( 1

2 πr2)ez (61)

and so (59) is fully secured. Integration of Euler’s equation renders

p(r, z) = p0 − 1
2 π2z2 −Wcπz− 1

2 r−2 sin2( 1
2 πr2) (62)

For uniform or parabolic injection, axial velocities may be determined only approximately
through (35) and (42); as such, the integrability constraint (59) is no longer satisfied. However,
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along the centerline, the constraint remains valid. At r = 0, the radial velocity shared by both
injection profiles vanishes in view of

u(0, z) = lim
r→0

r−1 sin( 1
2 πr2) = 0 (63)

As for the axial velocities, they become equal viz.

wuniform(0, z) = wparabolic(0, z) = πz + Wc (64)

This enables us to integrate (57) and collect

p(0, z) = p0 − 1
2 π2z2 − πzWc (65)

Interestingly, all injection profiles generate the same expression for the centerline pressure.
To overcome the pitfalls of pressure integrability of a non-exact velocity, approximate
representations of p may be sought based on a linear expansion that becomes increasingly
more accurate as z is increased. This is

p(r, z) =
∞

∑
n=0

pn(r, z) (66)

where pn is the pressure corresponding to the nth eigenmode in (20). Integration of the
pressure in this case is possible because each eigensolution given by ψn(r, z) consists of an
exact solution of the Euler equations that directly satisfies (59). Using

un = −αnr−1 sin χn;

wn = (2n + 1)π(αnz + βn) cos χn (67)

one can integrate for the pressure to find

pn(r, z) = p0 − 1
2 (2n + 1)2π2α2

nz2 − (2n + 1)2π2αn βnz− 1
2 α2

nr−2 sin2 χn (68)

or

p(r, z) =
∞

∑
n=0

pn = p0 − 1
2 π2z2 − β0π2z− 1

2 r−2 sin2( 1
2 πr2) (69)

As shown in Figure 7, this linear approximation stands in better agreement with the
numerical data than the result obtained in (65) for the pressure based on the total
velocity. This may be connected to the increasing accuracy associated with a linear
vorticity-streamfunction assumption and the superposition of eigensolutions with successive
increases in z (Kurdyumov, 2008).

2.8 Numerical verification
So far we have introduced an approximate Euler solution for the Taylor–Culick profile
with variable headwall injection. By way of confirmation, an inviscid numerical solution
is presented for the mean flow using three illustrative headwall injection profiles. Our
simulations are carried out using a finite-volume CFD solver. The targeted flow is that
corresponding to a rocket motor with an average sidewall Mach number of 0.03 and strictly
inviscid conditions. For the sake of comparison, the working fluid is taken to be ambient
air. The aspect ratio of the domain is set at L = 16. The actual length and radius are
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Fig. 7. Comparison between analytical (—) for (65), (− · −) for (69) and numerical
simulations (�) for the centerline pressure using (a, b) cosine, (c, d) parabolic, and (e, f)
uniform injection. Curves are shown for z/L = 0.1, 0.3, 0.5, 0.7, and 0.9.

taken at 1.6 m × 0.1 m and the wall injection velocity is taken at 10 m/s for the simulated
SRM. The boundary condition at the sidewall is specified as a velocity inlet to closely mimic
the mathematical model where injection is imposed uniformly along the grain surface. The
headwall is also defined as a velocity inlet. On the right-hand-side of the domain, a pressure
outlet boundary condition is prescribed where the exit pressure is set to be atmospheric as in
the case of sea level testing. Although an outflow boundary condition can also be imposed at
the downstream section, it is avoided here to avert the possible case of partially developed
flow (White, 2005). The difference between an outflow and a pressure outlet boundary
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condition is that, in the latter case, the exit pressure is fixed at the boundary. The domain is
meshed into 589,824 equally spaced control volumes consisting of 3072× 192 cells. While the
Quadratic Upwind Interpolation for Convection Kinematics (QUICK) scheme is called upon
for spatial discretization, the Semi Implicit Method for Pressure Linked Equation (SIMPLE)
algorithm is used to resolve the pressure–velocity coupling.
Results for the inviscid simulations are shown in Figures 7–8. These are carried out for Wc = 1
and 10 (i.e., solid and hybrid motors); their purpose is to show the streamwise evolution of
the axial velocity, vorticity, and centerline pressure at z/L = 0.1, 0.3, . . . , 0.9. It may be seen
that the agreement with the computations is excellent except in the case of uniform injection
with a large Wc. This may be attributed to the discontinuity that the uniform injection profile
experiences at the sidewall. Furthermore, according to (56), we expect the residual error to be
large. These limited numerical runs reaffirm the viability of the analytical approximations as
simple predictive tools.

3. Generalized Taylor-Culick formulation

In Section 2.1, we presented a mean flow model for solid and hybrid rocket motors that
could assimilate a rather arbitrary headwall injection profile based on a specific form of βn .
Initially, the solutions were obtained in series form that depended on two parameters, αn
and βn, the sidewall and headwall injection sequences. While βn was prescribed by the
headwall injection pattern, the choice of αn appeared to be flexible provided that the constraint
given by (22) remained satisfied. In this section, we follow Majdalani & Saad (2007a) by
applying the Lagrangian optimization technique to the total kinetic energy of the generalized
Taylor–Culick solution to the extent of producing a variational constraint on αn (see also
Saad & Majdalani, 2010). After some effort, two types of solutions will be identified with
increasing or decreasing kinetic energies; of the two families, the Taylor–Culick model will
be recovered as a special case. The new approximations will be shown to exhibit velocity
profiles with energy dependent curvatures that are reminiscent of turbulent or compressible
motions. In practice, steeper profiles have been observed in either experimental or numerical
tests, particularly in the presence of intense levels of acoustic energy (Apte & Yang, 2000; 2001;
2002). Interestingly, the energy-based models will range from irrotational to rotational fields
with increasing vorticity, thus covering a wide spectrum of admissible motions that observe
the problem’s physical requirements. A second law analysis will be later used to test the
physicality of these solutions and establish the Taylor–Culick motion as an equilibrium state
to which all profiles will tend to converge.

3.1 Kinetic energy optimization
As shown in Section 2.1, the sidewall injection sequence must observe a key constraint
associated with the wall-normal injection velocity:

∞

∑
n=0

(−1)nαn = 1 (70)

Clearly, numerous sequences of αn exist that can be made to satisfy (70). One of these choices
may be arrived at by optimizing the total volumetric kinetic energy in the chamber. The
guiding principle is based on the hypothesis that a flow may follow the path of least or most
energy expenditure. To test this behavior, we evaluate the local kinetic energy at (r, θ, z) for
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Fig. 8. Comparison between analytical (—) and numerical simulations (◦) for the axial
velocity using (a, b) cosine, (c, d) parabolic, and (e, f) uniform injection. Curves are shown for
z/L = 0.1, 0.3, 0.5, 0.7, and 0.9.

each eigensolution using

En(r, θ, z) = 1
2 u2

n = 1
2 (u

2
n + v2

n + w2
n) (71)

where each mode is an exact solution that is given by
{

un = −r−1αn sin χn; vn = 0
wn = παnz(2n + 1) cos χn

χn ≡ (n + 1
2 )πr2 (72)
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Fig. 9. Comparison between analytical (—) and numerical simulations (◦) for the vorticity
magnitude using (a, b) cosine and (c, d) parabolic injection. Curves are shown for z/L = 0.1,
0.3, 0.5, 0.7, and 0.9.

We now define the cumulative local kinetic energy as the sum of contributions from individual
eigensolutions. This can be written as

E(r, θ, z) =
∞

∑
n=0

En(r, θ, z) = 1
2

∞

∑
n=0

[
α2

nr−2 sin2 χn + π2α2
nz2(2n + 1)2 cos2 χn

]
(73)

Subsequently, the total kinetic energy in a chamber of volume V may be calculated by
integrating the local kinetic energy over the length and chamber cross-section,

EV =
∫∫∫

V
E(r, θ, z)r dr dθ dz = π

∞

∑
n=0

∫ L

0

∫ 1

0
α2

n

[
sin2 χn

r2 + π2z2(2n + 1)2 cos2 χn

]
r dr dz

Straightforward evaluation and simplification yield

EV = 1
12 π3L3

∞

∑
n=0

(α2
nan + α2

nπ−2L−2dn);
{

an = (2n + 1)2

dn = 3Cin[(2n + 1)π]
(74)

where Cin(x) ≡
∫ x

0
(1− cos t)t−1 dt is the Entire Cosine Integral. At this point, one may

seek the extremum of (74) subject to the fundamental constraint (70). The latter enables us
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to introduce the constrained energy function

G(α0, α1, α2, . . . , λ) = EV + λ

[
∞

∑
n=0

(−1)nαn − 1

]
(75)

where λ is a Lagrangian multiplier. Equation (75) can be maximized or minimized by
imposing∇G(α0, α1, α2, . . . , λ) = 0. In shorthand notation, we put

∇G(αn, λ) = 0; n ∈ N0 (76)

Naturally, the constrained energy function may be differentiated with respect to each of its
variables to obtain

∂G
∂αn

= 1
6 π3L3

(
αnan +

αndn

π2L2

)
+ (−1)nλ = 0 (77)

and
∂G
∂λ

=
∞

∑
n=0

(−1)nαn − 1 = 0 (78)

Equation (77) may be used to extract αn in terms of λ such that

αn = − 6(−1)nλ

π3L3(an + π−2L−2dn)
(79)

Then, through substitution into (78), one retrieves

λ = − π3L3

6
∞

∑
n=0

(an + π−2L−2dn)
−1

(80)

Finally, when λ is inserted into (79), a general solution for αn emerges, specifically

αn =
(−1)n

(an + π−2L−2dn)N
; N =

∞

∑
i=0

1
ai + π−2L−2di

(81)

Clearly, (81) satisfies the fundamental constraint which, by inspection, returns

∞

∑
n=0

(−1)nαn =
1
N

∞

∑
n=0

1
(an + π−2L−2dn)

=
N
N

= 1 (82)

Some values of αn are posted in Table 1 at four different aspect ratios corresponding to L =
1, 5, 10, and 100. With this expression at hand, the total energy EV is completely determined.

3.2 Critical length
Equation (74) can be normalized by L3 and simplified into an energy density form. This can
be accomplished by setting

E = EV/L3 (83)

By plotting E versus L in Figure 10, it can be seen that E approaches a constant asymptotic
value of E∞ = 2π/3. Granted this behavior, a critical aspect ratio Lcr may be defined beyond
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n L = 1 L = 5 L = 10 L = 100

0 0.7524 0.8095 0.8115 0.8121
1 -0.1146 -0.0914 -0.0905 -0.0902
2 0.0434 0.0329 0.0326 0.0324
3 -0.0225 -0.0168 -0.0166 -0.0165
4 0.0137 0.0101 0.0100 0.0100
5 -0.0092 -0.0068 -0.0067 -0.0067

Table 1. Convergence of the sidewall injection sequence αn for L = 1, 5, 10, and 100.
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Fig. 10. Kinetic energy density variation with L. Note that for L > 6.7, the energy density will
be within 1% of its final asymptotic value E∞.

which the energy density will vary by less than one percent from its asymptotic value E∞. We
therefore set

Ecr − E∞ ≤ 0.01 E∞ (84)

For a chamber of length L ≥ Lcr, one may evaluate the limiting behavior of (81) by taking
L → ∞. For SRMs with inert headwalls, the critical length is found to be 6.7. In practice, most
SRMs are designed with an aspect ratio that exceeds 20 and so the assumption of a large L may
be safely employed in describing their flow fields. With this simplification, the expression for
αn collapses into

lim
L→∞

αn = (−1)n

(
an

∞

∑
i=0

1
ai

)−1

=
8(−1)n

π2(2n + 1)2 (85)

Note that (85) identically satisfies the sidewall constraint viz.

∞

∑
n=0

(−1)nαn =
8

π2

∞

∑
n=0

1
(2n + 1)2 = 1 (86)

The large-L approximation of αn quickly converges as illustrated in Table 2.

3.3 Least kinetic energy solution
While the use of Lagrangian multipliers enables us to identify the problem’s extremum,
straightforward substitution of (81) into (74) allows us to compare the energy content of
the present approximation to that of Taylor–Culick’s. We find that the extremum obtained
through Lagrangian optimization corresponds to the solution with least kinetic energy. Given
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Fig. 11. Streamlines corresponding to the minimum kinetic energy solution (87) for an inert
headwall. Solid lines: Taylor-Culick; broken lines: minimum energy solution.

an inert headwall, the minimum energy approximation reduces to

ψ(r, z) =
8

π2 z
∞

∑
n=0

(−1)n

(2n + 1)2 sin χn �→ r2z (87)

The right–oriented mapping arrow ‘ �→’ in (87) is used to indicate that the compacted
expression is valid inside the domain, 0 ≤ r < 1, thus excluding the sidewall. We also remark
that, in evaluating (87), the large L approximation is used. The corresponding streamfunction,
velocity, and vorticity are catalogued in Table 3. The streamlines are shown in Figure 11(a)
using solid lines to denote the Taylor–Culick benchmark, and broken lines to describe the
minimum energy solution.

m αm ∑m
n=0(−1)nαn

0 0.8105 0.8105
1 -0.0900 0.9006
2 0.0324 0.9330
3 -0.0165 0.9495
4 0.0100 0.9596
5 -0.0066 0.9663
∞ 0.0000 1.0000

Table 2. Convergence of the sidewall injection sequence αn when L → ∞.
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3.4 Type I solutions with increasing energy levels
At this juncture, we have identified only one profile bearing the minimum kinetic energy that
the flow can possibly afford. It may be hypothesized that two complementary families of
solutions exist with the unique characteristics of exhibiting varying energy levels from which
the Taylor-Culick model may be recovered. To this end, it may be useful to seek mean flow
solutions with either increasing or decreasing energies. It would also be instructive to rank
the Taylor-Culick solution according to its energy content within the set of possible solutions.
In the interest of simplicity, we consider long chambers and make use of (85) as a guide. Based
on the form obtained through Lagrangian optimization, we note that

αn =
8(−1)n

π2(2n + 1)2 ∼
(−1)n A2

(2n + 1)2 (88)

where A2 = 8/π2 can be deduced from the radial inflow requirement given by (70). Its
subscript is connected with the power of (2n + 1) in the denominator. To generalize, we posit
the generic Type I form

α−n (q) =
(−1)n Aq

(2n + 1)q ; q ≥ 2 (89)

where the exponent q will be referred to as the kinetic energy power index. This is due to its
strong connection with the kinetic energy density as it will be shown shortly. The constant Aq
can be used to make (89) consistent with (70). This enables us to retrieve

∞

∑
n=0

(−1)n (−1)n Aq

(2n + 1)q = 1 (90)

or

Aq =
1

∑∞
n=0(2n + 1)−q =

1
ζ(q)(1− 2−q)

; ζ(q) =
∞

∑
k=1

k−q (91)

where ζ(s) is Riemann’s zeta function. Clearly, the case corresponding to q = 2 reproduces
the state of least energy expenditure. Furthermore, the q ≥ 2 condition is needed to ensure

w(r, 0) ψ−(r, z) w−(r, z)

0 ψ−ref ≡
8

π2 z
∞

∑
n=0

(−1)n

(2n + 1)2 sin χn �→ r2z w−ref ≡
8
π

z
∞

∑
n=0

(−1)n

(2n + 1)
cos χn �→ 2z

Wc ψ−ref +
4Wc

π2

∞

∑
n=0

(−1)n

(2n + 1)2 sin χn w−ref +
4Wc

π

∞

∑
n=0

(−1)n

(2n + 1)
cos χn

Wc cos( 1
2 πr2) ψ−ref +

Wc

π
sin( 1

2 πr2) w−ref + Wc cos( 1
2 πr2)

Wc(1− r2) ψ−ref +
8Wc

π3

∞

∑
n=0

sin χn

(2n + 1)3 w−ref +
8Wc

π2

∞

∑
n=0

cos χn

(2n + 1)2

Table 3. Summary of least kinetic energy solutions.
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Fig. 12. Variation of the kinetic energy density with the energy power index for Type I (lower
branch) and Type II (upper branch) solutions. These are shown at two aspect ratios, L = 10
(—) and 20 (− · −).

series convergence down to the vorticity. Backward substitution allows us to extract the final
form of αn, namely,

α−n (q) =
(−1)n(2n + 1)−q

∑∞
k=0(2k + 1)−q =

(−1)n(2n + 1)−q

ζ(q)(1− 2−q)
; q ≥ 2 (Type I) (92)

To understand the effect of the energy power index q on the kinetic energy density, we use
(92) and (74) to plot E versus q at two aspect ratios. This plot corresponds to the lower branch
of Figure 12 for both L = 10 and 20. Interestingly, as q → ∞, Taylor–Culick’s classic solution
is recovered. In fact, using (92), it can be rigorously shown that

lim
q→∞

α−n (q) =

{
1; n = 0
0; otherwise

(93)

This result identically reproduces Taylor–Culick’s expression. All of the Type I solutions
derived from (92) possess kinetic energies that are lower than Taylor–Culick’s; this explains
the negative sign in the superscript of α−n . They can be bracketed between (87) and ψ(r, z) =
z sin( 1

2 πr2). In practice, profiles with q ≥ 5 will be indiscernible from Taylor–Culick’s as their
energies will then differ by less than one percent. The most distinct solutions will correspond
to q = 2, 3, and 4 with energies that are 81.1, 91.7, and 97.3 percent of Taylor–Culick’s,
respectively.

3.5 Type II solutions with decreasing energy levels
To capture solutions with energies that exceed that of Taylor-Culick’s, a modified form of αn
is needed. We begin by introducing

α+n (q) =
Bq

(2n + 1)q ; q ≥ 2 (94)

The key difference here stands in the exclusion of the (−1)n multiplier that appears in (89).
The remaining steps are similar. Substitution into (70) unravels

∞

∑
n=0

(−1)nBq

(2n + 1)q = 1 (95)
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Fig. 13. Comparison of the Taylor–Culick streamlines (—) and the Type II energy-maximized
solution (q = 2) with stretched streamline curvature (− · −). Results are shown for an inert
headwall.

or

Bq =
1

∑∞
n=0(−1)n(2n + 1)−q =

4q

ζ(q, 1
4 )− ζ(q, 3

4 )
; (96)

where ζ(q, a) is the generalized Riemann zeta function given here as

ζ(q, a) =
∞

∑
k=0

(k + a)−q; ∀ a ∈ R (97)

Equation (94) yields the general structure of the Type II complementary family of solutions

α+n (q) =
(2n + 1)−q

∑∞
k=0(−1)k(2k + 1)−q

=
4q(2n + 1)−q

ζ(q, 1
4 )− ζ(q, 3

4 )
; q ≥ 2 (Type II) (98)

Note that the Type II solutions emerging from (98) dispose of kinetic energies that are higher
than Taylor-Culick’s. The variation of the solution with respect to q is embodied in the upper
branch of Figure 12. According to this form of α+n , Taylor-Culick’s model is recoverable
asymptotically by taking the limit as q → ∞. Here too, most of the solutions exhibit energies
that fall within one percent of Taylor-Culick’s. The most interesting solutions are those
corresponding to q = 2, 3, and 4 with energies that are 47.0, 8.08, and 2.4 percent larger
than Taylor-Culick’s. When the energy level is fixed at q = 2, a simplification follows for the
Type II representation. Catalan’s constant emerges in (98), namely,

C =
∞

∑
k=0

(−1)k(2k + 1)−2 � 0.915966 (99)

The Type II solution that carries the most energy at q = 2 is plotted in Figure 13 and listed
in Table 4. In Figure 13, the Type II approximation is seen to overshoot the Taylor-Culick
streamline curvature. In view of the two types of solutions with energies that either lag or
surpass that of Taylor-Culick’s, one may perceive the q → ∞ case as a saddle point to which
other possible forms will quickly converge when their energies are shifted. Later in Section
3.12, we will use the entropy maximization principle to establish the Taylor–Culick model as
a local equilibrium solution to which all other profiles will be attracted to.
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w(r, 0) ψ+(r, z) w+(r, z)

0 ψ+
ref ≡

z
C

∞

∑
n=0

sin χn

(2n + 1)2 w+
ref ≡

π

C
z

∞

∑
n=0

cos χn

(2n + 1)

Wc ψ+
ref +

4Wc

π2

∞

∑
n=0

(−1)n

(2n + 1)2 sin χn w+
ref +

4Wc

π

∞

∑
n=0

(−1)n

(2n + 1)
cos χn

Wc cos( 1
2 πr2) ψ+

ref +
Wc

π
sin( 1

2 πr2) w+
ref + Wc cos( 1

2 πr2)

Wc(1− r2) ψ+
ref +

8Wc

π3

∞

∑
n=0

sin χn

(2n + 1)3 w+
ref +

8Wc

π2

∞

∑
n=0

cos χn

(2n + 1)2

Table 4. Summary of solutions with most kinetic energy for various headwall injection
patterns. Here, χn ≡ 1

2 (2n + 1)πr2.
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Fig. 14. Effect of the kinetic energy power index on the two types of energy-based solutions.
Results are shown for (a) turn angle, (b) radial velocity, and (c) axial velocity.
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3.6 Behavior of the velocity and vorticity fields
The sensitivity of the solution to the energy power index q is illustrated in Figure 14 where
both components of the velocity are displayed in addition to the streamline turn angle θ.

3.6.1 Turn angle
This angle represents the slope of the local velocity measured from the radial injection
direction. Making use of axial similarity, θ may be expressed as

θ(r) =
180
π

tan−1
(
− 1

z
w
u

)
(100)

The turn angle is shown in Figure 14(a) where, irrespective of q, the flow enters radially
at the sidewall with θ(1) = 0. This feature confirms that the flow enters the chamber
perpendicularly to the surface in fulfilment of the no-slip requirement. Conversely, for all
cases considered, the establishment of strictly parallel motion along the centerline is reflected
in θ(0) = 90. Crossing the region between the wall and the centerline, the q = 2 Type I case is
accompanied by the sharpest change in the turn angle from 0 to 90 degrees. However, as we
shift toward the state of most kinetic energy, the smoothing process causes the turn angle to
change more gradually. This may be explained by the relative magnitudes of the radial and
axial velocities. Specifically, for the Type I, q = 2 case, the axial velocity remains practically
constant at any chamber cross-section, whereas the radial velocity magnitude increases with
r. As we cross into the Type II region, the flow starts turning in the vicinity of the sidewall
and progresses smoothly as the centerline is approached.

3.6.2 Radial velocity
The radial velocity is illustrated in Figure 14(b) for representative energy power indices.
Starting with the Type II region, the q = 2 solution is seen to exhibit a maximum radial
velocity overshoot of 16.5 percent relative to the sidewall injection speed. This overshoot
reaches its peak at r = 0.66 and is required to compensate for the decreasing circumferential
area (2πrL) normal to the injected stream. Recalling that the Taylor-Culick radial velocity
exhibits a 7 percent overshoot at r = 0.861, the maximum overshoot calculated here is more
than twice as large; it also occurs at a greater distance from the sidewall. Overall, the Type
II solutions exhibit smoother curvatures as q is increased. In contrast, by examining the case
of least kinetic energy in Figure 14(b), no radial overshoot is observed. Instead, the radial
velocity displays its lowest absolute value by diminishing linearly from 1 at the wall to 0 at
the centerline. This linear variation is accompanied by an essentially uniform axial velocity
depicted for the Type I q = 2 case in Figure 14(c). At the outset, the locus of the overshoot
varies between 0.66 < r < 1 as one moves from the Type II, q = 2 to the Type I, q = 2 case.

3.6.3 Axial velocity
In Figure 14(c), it is clear that the Type I axial velocities are initially blunt, with the flattest
curve being the one corresponding to the top-hat profile at q = 2. As q is increased,
all curves evolve into a sinusoid that approaches the Taylor–Culick model for q = 5 and
above. Furthermore, as we cross into the Type II region, the centerline velocity continues to

increase with increasing energy levels. Due to mass conservation, Q = 2π
∫ 1

0
wr dr = 2πz,

and so the centerline speed at each power index is compelled to vary with its corresponding
shape to preserve Q. The lowest centerline speed will thus accompany the spatially uniform
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w(r, 0) Ω−(r, z) Ω+(r, z)

0 0 Ω+
ref ≡

π2

2C
rz csc( 1

2 πr2)

Wc 0 Ω+
ref

Wc cos( 1
2 πr2) πWcr sin( 1

2 πr2) Ω+
ref + πWcr sin( 1

2 πr2)

Wc(1− r2) 2Wcr Ω+
ref + 2Wcr

Table 5. Vorticity for least or most kinetic energy solutions.

distribution whereas the highest speed will emerge in the narrowest and most elongated
profile connected with the state of most kinetic energy. Interestingly, although this profile
slowly diverges at the centerline, it observes mass conservation. This may be explained by the
fact that lim

r→0
rw+(r, z) = 0.

3.6.4 Vorticity
Having fully determined the velocity field, its vorticity companion may be determined from

Ω = Ωθ = π2r
∞

∑
n=0

(2n + 1)2αnz sin χn (101)

This expression is evaluated for the least and most kinetic energy forms (q = 2) and provided
in Table 5.

3.6.5 Irrotational motion
For the least kinetic energy solution (Type I, q = 2), the linear variation that accompanies
the radial velocity as well as the uniformity of the axial velocity are characteristics of an
irrotational motion. The vorticity in this case vanishes and the corresponding velocity field
collapses into u = −rer + 2zez. This potential analogue of the Taylor–Culick velocity has been
historically used by McClure et al. (1963) and Hart & McClure (1959) in modeling the internal
flow in SRMs. It is recovered here as an extreme state with the lowest kinetic energy.

3.7 Pressure evaluation
One may approximate the pressure by taking

p(r, z) =
∞

∑
n=0

pn(r, z) (102)

By substituting un and wn from (72) into (4b), the pressure eigenmodes may be integrated.
One gets

pn = p0 − 1
2 (2n + 1)2π2z2α2

n − 1
2

α2
n

r2 sin2 χn (103)

The total pressure is then determined by summing over all eigensolutions

p(r, z) = p0 − 1
2 π2z2

∞

∑
n=0

(2n + 1)2α2
n − 1

2

∞

∑
n=0

α2
n

r2 sin2 χn (104)
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Fig. 15. Centerline pressure drop for the two types of energy-driven solutions.

where p0 = p(0, 0). Interestingly, the pressure drop along the centerline collapses into

Δp = p(0, z)− p0 = − 1
2 π2z2

∞

∑
n=0

(2n + 1)2α2
n (105)

Equation (105) is plotted in Figure 15 for q = 2, 3, and ∞. Unsurprisingly, the largest pressure
excursion is seen to accompany the Type II state with most kinetic energy while the smallest
pressure loss is accrued in the least kinetic energy expression, specifically, in the q = 2
potential case.

3.8 Asymptotic limits of the kinetic energy density
When the large L approximation is employed with q = 2, the Type II kinetic energy density
E + approaches a constant value of E +

∞ (2) = π5/(96C 2) ≈ 3.79944. Note that the asymptotic
value for Taylor–Culick’s (i.e. when both L and q approach infinity), E ∞

∞ ≡ π3/12 ≈ 2.5838,
is recovered as q → ∞. In general, when L → ∞, the limit of the kinetic energy density can be
written as

E∞ = 1
12 π3

∞

∑
n=0

(2n + 1)2α2
n = E ∞

∞

∞

∑
n=0

(2n + 1)2α2
n (106)

For the Type I solutions, substitution of (106) yields a closed-form expression,

E −∞ (q) = E ∞
∞

[
∞

∑
k=0

1
(2k + 1)q

]−2 ∞

∑
n=0

(2n + 1)2−2q = E ∞
∞

4q − 4
(2q − 1)2

ζ(2q− 2)
ζ(q)2 (107)

In like manner, for the Type II solutions, (106) leads to

E +
∞ (q) = E ∞

∞

[
∞

∑
k=0

(−1)k

(2k + 1)q

]−2 ∞

∑
n=0

(2n + 1)2−2q = E ∞
∞

4q(4q − 4)ζ(2q− 2)
[ζ(q, 1

4 )− ζ(q, 3
4 )]

2
(108)

As shown in Figure 16 both types approach E ∞
∞ either from below or above, depending on q.

The Taylor–Culick limit of 2.5838 is practically reached by both Type I and Type II solutions
with differences of less than 0.287 and 0.265 percent at q = 6. The maximum range occurs at
q = 2 while the total allowable excursion in energy that the mean flow can undergo may be
estimated at

[
E +

∞ (2)− E −∞ (2)
]

/E ∞
∞ = 0.66. From an academic standpoint, the Type I family of
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Fig. 16. Asymptotic behavior of the kinetic energy density for both Type I (- - -) and Type II (+
+ +) solutions.

solutions bridges the gap between an essentially potential flow at q = 2 and a fully rotational
field at q → ∞, thus yielding intermediate formulations with energies that vary across the
range [0.81− 1]E ∞

∞ .

3.9 Convergence properties
Using the absolute convergence and ratio tests, the series representations can be individually
shown to be unconditionally convergent for q ≥ 2. The most subtle solutions to examine
correspond to the Type II inert headwall case with maximum kinetic energy. The attendant
velocity and vorticity forms require special attention. For the sake of illustration, we consider
the Type II streamfunction, specifically

ψ(r, z) = z
∞

∑
n=0

Bq

(2n + 1)q sin χn; χn ≡ 1
2 (2n + 1)πr2 (109)

The absolute convergence test may be applied to show that

∞

∑
n=0

∣∣∣∣ 1
(2n + 1)q sin χn

∣∣∣∣ ≤
∞

∑
n=0

1
(2n + 1)q (110)

where the right-hand-side converges for q > 1. In evaluating quantities that require one
or more differentiations (such as the vorticity), we find it useful to substitute, whenever
possible, the closed-form analytical representations of the series in question. The equivalent
finite expressions enable us to overcome the pitfalls of term-by-term differentiation which,
for some infinite series, can lead to spurious results. The Type II axial velocity for the inert
headwall configuration presents such an example at q = 2. This series can be collapsed into a
combination of inverse hyperbolic tangent functions by writing

w+ =
∞

∑
n=0

B2
(2n + 1)

cos χn =
1

2C

[
tanh−1

(
ei 1

2 πr2
)
+ tanh−1

(
e−i 1

2 πr2
)]

(111)

While term-by-term differentiation of the infinite series representation of w+ diverges, the
derivative of the closed-form equivalent yields the correct outcome of

Ω+ = − π

2C
r csc( 1

2 πr2) (112)
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As it may be expected, the corresponding solution is accompanied by finite kinetic energy and
mass flowrate despite its singularity at the centerline.

3.10 Arbitrary headwall injection
For T-burners, solid rocket motors with reactive fore-ends, and hybrid rocket chambers
with injector faceplates, a model that accounts for headwall injection is required. For
these problems, our analysis may be repeated assuming an injecting headwall with an
axisymmetrically varying profile defined by (8). The streamfunction becomes

ψ(r, z) =
∞

∑
n=0

(αnz + βn) sin[ 1
2 (2n + 1)πr2] (113)

In the resulting expressions, βn does not vanish. As shown by Majdalani & Saad (2007b)
and detailed in Section 2.1, orthogonality may be applied to obtain βn for an axisymmetric
headwall injection pattern. Application of Lagrangian optimization in conjunction with the
large L approximation yield identical results for αn as those obtained in (92) and (98). The
streamfunction, axial velocity, and vorticity for several injection profiles are available through
Tables 3, 4, and 5 where the least and most kinetic energy solutions are identified.

3.11 Numerical verification
Our analytical expansions may be verified by solving (13) using Runge-Kutta integration. We
begin by introducing the transformation ψ = z f (r) through which (13) may be reduced to a
second order ODE

F′′(r)− 1
r

F′(r) + C2r2F(r) = 0 (114)

In order to numerically capture the different variational solutions, the boundary conditions of
(14) have to be carefully selected. Because our solutions are in series form, we first decompose
F(r) into its eigenmode components by taking

F(r) =
∞

∑
n=0

Fn(r) (115)

and so (114) becomes

F′′n (r)−
1
r

F′n(r) + C2
nr2Fn(r) = 0; n = 0, 1, · · · , ∞ (116)

where n corresponds to the eigenmode associated with Cn = (2n + 1)π. Finally, the boundary
conditions may be written as⎧⎪⎪⎨

⎪⎪⎩
Fn(0) = 0; F(0) =

∞
∑

n=0
Fn(0) = 0

Fn(1) = (−1)nαn; F(1) =
∞
∑

n=0
Fn(1) =

∞
∑

n=0
(−1)nαn = 1

(117)

Using 120 terms to reconstruct the series expansions, both numerical and analytical solutions
for F(r) and F′(r) are displayed in Figures 17(a) and 17(b), respectively. This comparison is
held at representative values of the kinetic energy power index corresponding to q = 2, 3, and
∞. It is gratifying that, irrespective of q and n, the variational solutions are faithfully simulated
by the numerical data to the extent that visual differences between full circles (numerical) and
solid lines (analytical) are masked.
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Fig. 17. Comparison between analytical (—) and numerical (◦) solutions for (a) F(r), and (b)
F′(r) for Type I (blue) and Type II (red) solutions. Plots are shown for q = 2, 3 and ∞. Here,
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3.12 Unphysicality of the Type II family of solutions
To explore the physicality of our variational solutions, a second law analysis is helpful. To
better understand the mechanisms responsible for the system to opt for one energy state over
another, or one type of solution over another, the principle of entropy maximization may be
referred to. This principle states that a system will tend to maximize entropy at equilibrium
and may hence be applied to our problem by considering the different energy solutions
as different states of the same system. As shown by Saad & Majdalani (2010), the second
law analysis reveals that the volumetric entropy of the Type I family grows with successive
increases in q but depreciates in the Type II case. So given an initial profile, the system may
evolve according to one of two scenarios that are described below.

3.12.1 Type I branching
If the system is initialized on the Type I branch, it will evolve toward the Taylor–Culick
solution to the extent of maximizing its total entropy. While entropy could be further increased
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by branching out to the Type II region, it may be argued that such development is not possible
for two reasons. Firstly, the character of the two types of solutions is sharply dissimilar,
especially in the expressions for α−n and α+n . Secondly, given that the Taylor–Culick solution
maximizes the entropy for the Type I branch, it can be viewed as a local equilibrium state. As
such, there is no necessity for the system to switch branches once it reaches the Taylor–Culick
state.

3.12.2 Type II branching
If the system is initialized on the Type II branch, it will approach the solution with most
vorticity (i.e. Type II, q = 2). Although this may be a mathematically viable outcome, it may
not be physically realizable because it would be practically impossible to initialize a system
with such a high level of vorticity without the aid of external work. The most natural flow
evolution corresponds to an irrotational system originally at rest in which vorticity generation
is initiated at the sidewall during the injection process. The ensuing motion will subsequently
progress until it reaches the stable Taylor–Culick equilibrium state wherein it can settle with
no further tendency to branch out.

4. Conclusions

For four decades and counting, the motion of incompressible fluids through porous tubes
with wall-normal injection (or suction) has been extensively used in the propulsion and
flow separation industries. In this chapter, the focus has been on the inviscid form of the
Taylor-Culick family of incompressible solutions. The originality of the analysis stands,
perhaps, in the incorporation of variable headwall injection using a linear series expansion
that may be attributed to Majdalani & Saad (2007b).
The extended Taylor-Culick framework has profound implications as it permits the imposition
of realistic conditions that may be associated with solid or hybrid propellant rockets
with reactive fore ends or injecting faceplates. The procedure that we follow starts
with Euler’s steady equations, and ends with an approximation that is exact only at
the sidewall, the centerline, or when using similarity-conforming inlet velocities. For
similarity-nonconforming profiles, our approach becomes increasingly more accurate as the
distance from the headwall is increased; this property makes our model well suited to
describe the bulk motion in simulated solid and hybrid rockets where the blowing speed
is assumed to be uniformly distributed along the grain surface. The justification for using
a linear summation of eigensolutions and the reason for its increased accuracy in elongated
chambers may be connected, in part, to the quasi-linear behavior of the vorticity transport
equation for large z. Such behavior is corroborated by the residual error analysis that we
carried out in Section 2.6. Furthermore, as carefully shown by Kurdyumov (2008), the
vorticity-streamfunction relation appears to be strongly nonlinear in the direct vicinity of the
headwall, yet becomes increasingly more linear with successive increases in z.
Another advantage of the present formulation may be ascribed to its quasi-viscous character,
being observant of the no-slip requirement at the sidewall. Based on numerical simulations
conducted under both inviscid and turbulent flow conditions, the closed-form expressions
that we obtain appear to provide reasonable approximations for several headwall injection
patterns associated with conventional laminar and turbulent flow profiles. Everywhere, our
comparisons are performed for the dual cases of small and large headwall injection in an
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effort to mimic the internal flow character in either SRM or hybrid rocket motors. Overall,
we find that the flow field evolves to the self-similar Taylor–Culick sinusoid far downstream
irrespective of the headwall injection pattern. Nonetheless, the details of headwall injection
remain important in hybrid motors, short chambers, and T-burners where the foregoing
approximations may be applied. In hybrid rockets, our models seem to capture the streamtube
motion quite effectively.
The other chief contribution of this chapter is the discussion of variational solutions that may
be connected with the Taylor-Culick problem. Based on the Lagrangian optimization of the
total volumetric energy in the chamber, we are able to identify two families of solutions with
dissimilar energy signatures. These are accompanied by lower or higher kinetic energies that
vary, from one end of the spectrum to the other, by up to 66 percent of their mean value.
After identifying that α−n ∼ (−1)n(2n + 1)−2 yields the profile with least kinetic energy, a
sequence of Type I solutions is unraveled in ascending order, α−n ∼ (−1)n(2n + 1)−q; q > 2,
up to Taylor-Culick’s. The latter is asymptotically recovered in the limit of q → ∞, a case
that corresponds to an equilibrium state with maximum entropy. In practice, most solutions
become indiscernible from Taylor-Culick’s for q ≥ 5. Indeed, those obtained with q = 2, 3, and
4 exhibit energies that are 18.9, 8.28, and 2.73 percent lower than their remaining counterparts.
The least kinetic energy solution with q = 2 returns the classic, irrotational Hart-McClure
profile. It can thus be seen that the application of the Lagrangian optimization principle to
this problem leads to the potential form that historically preceded the Taylor-Culick motion. It
can also be inferred that the Type I solutions not only bridge the gap between a plain potential
representation of this problem and a rotational formulation, but also recover a continuous
spectrum of approximations that stand in between. When the same analysis is repeated using
α+n ∼ (2n + 1)−q; q ≥ 2, a complementary family of Type II solutions is identified with
descending energy levels. These are shown to be purely academic, although they represent
a class of exact solutions to the modified Helmholtz equation. Their most notable profiles
correspond to q = 2, 3, and 4 with energies that are 47.0, 8.08, and 2.40 percent higher than
Taylor-Culick’s. Their entropies are also higher than that associated with the equilibrium state.
Despite their dissimilar forms, both Type I and II solutions converge to the Taylor-Culick
representation when their energies are incremented or reduced. Yet before using the new
variational solutions to approximate the mean flow profile in porous tubes or the bulk gaseous
motion in simulated rocket motors, it should be borne in mind that no direct connection
exists between the energy steepened states and turbulence. For this reason, it is hoped that
additional numerical and experimental investigations are pursued to test their physicality
and the particular configurations in which they are prone to appear. As for the uniqueness
of the Taylor-Culick equilibrium state, it may be confirmed from the entropy maximization
principle and the Lagrangian-based solutions where, for a given set of boundary conditions,
the equilibrium state may be asymptotically restored as q → ∞ irrespective of the form of
αn ∼ (−1)n(p n + m)−q, provided that the Lagrangian constraint ∑ (−1)nαn = 1 is faithfully
secured.
Lastly, we note that the collection of variational solutions that admit variable headwall
injection increase our repertoire of Euler-based approximations that may be used to model
the incompressible motion in porous tubes. For the porous channel flow analogue, the
planar solutions are presented by Saad & Majdalani (2008a; 2009b). As for tapered grain
configuration, the reader may consult with Saad et al. (2006) or Sams et al. (2007).
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1. Introduction

A significant increase in our energy consumption, from 495 quadrillion Btu in 2007 to 739
quadrillion Btu in 2035 with about 1.4% annual increase, is predicted (US Energy Information
Administraion, 2010). This increase is to be met in environmentally friendly means in order
to protect our planet. Despite the renewable energy sources are identified to be the fastest
growing in the near future, they are expected to meet only one third or less of this energy
demand. Also, the renewable generation methods face significant barriers such as economical
risks, high capital costs, cost for infrastructure development, low energy conversion efficiency,
and low acceptance level from public (US Energy Information Administraion, 2010) at this
time. It is likely that improvements will be made on all of these factors in due course. The role
of nuclear technology in the energy market will vary from time to time for many cultural and
political reasons, and the perceptions of the general public. In the current climate, however, it
is clear that the fossil fuels will remain as the dominant source to meet the demand in energy
consumption. Hence, optimised design of combustion and power generating systems for
improved efficiency and emissions performance are crucial.
The emissions of oxides of nitrogen and sulphur, and poly-aromatic hydrocarbons are known
sources of atmospheric pollution from combustion. Their detrimental effects on environment
and human health is well known (Sawyer, 2009) and green house gases such as oxides of
carbon and some hydrocarbons are also included as pollutants in recent years. The emission
of carbon dioxide (CO2) from fossil, liquid and solid, fuel combustion accounts for nearly
76% of the total emissions from fossil fuel burning and cement production in 2007 (Carbon
Dioxide Information Analysis Center, 2007). The global mean CO2 level in the atmosphere
increases each year by about 0.5% suggesting a global mean level of about 420 ppm by 2025
(Anastasi et al., 1990; US Department of Commerce, 2011) Such a forecasted increase has
led to stringent emission regulations for combustion systems compelling us to find avenues
to improve the environmental friendliness of these systems. Lean premixed combustion
is known (Heywood, 1976) to have potentials for effective reduction in emissions and to
increase efficiency simultaneously. Significant technological advances are yet to be made
for developing fuel lean combustion systems operating over wide range of conditions with
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desirable characteristics. This is because, ignition and stability of this combustion, controlled
strongly by turbulence-combustion interaction, are not fully understood yet. Many of the
recent studies are focused to improve this understanding as it has been noted in the books
edited by Echekki & Mastorakos (2011) and Swaminathan & Bray (2011).
The OEMs (original equipment manufacturers) of gas turbines and internal combustion
engines are embracing computational fluid dynamics (CFD) into their design practice to
find answers to what if? type questions arising at the design stage. This is because CFD
provides quicker and more economical solutions compared to "cut metal and try" approach.
Thus, having an accurate, reliable and robust combustion modelling becomes indispensable
while developing modern combustors or engines for fuel lean operation. In this chapter,
we discuss one such modelling method developed recently for lean premixed flames along
with its extension to partially premixed combustion. Partial premixing is inevitable in
practical systems and introduced deliberately under many circumstances to improve the flame
ignitability, stability and safety.
Before embarking on this modelling discussion, challenges in using the standard moment
methods for reacting flows, which are routinely used for non-reacting flows, are discussed
in the next section along with a brief discussion on three major computational paradigms
used to study turbulent flames. Section 1.2 identifies important scales of turbulent flame and
discusses a combustion regime diagram. The governing equations for Reynolds averaged
Navier Stokes (RANS) simulation of turbulent combustion are discussed in section 2 along
with turbulence modelling used in this study. The various modelling approaches for lean
premixed combustion are briefly discussed in section 3. The detail of strained flamelet model
and its extension to partially premixed flames are presented in section 4. Its implementation
in a commercial CFD code is discussed in section 4.2 and the results are discussed in section 5.
The final section concludes this chapter with a summary and identifies a couple of topics for
further model development.

1.1 Challenges
In the RANS approach, the instantaneous quantities are decomposed into their means and
fluctuations. The mean values of density, velocity, etc., in a flow are computed by solving
their transport equations along with appropriate modelling hypothesis for correlations of
fluctuating quantities. These modelling are discussed briefly in section 2. The simulations
of non-reacting flows have become relatively easier task now a days. The presence of
combustion however, significantly complicates matters and alternative approaches are to
be sought. Combustion of hydrocarbon, even the simplest one methane, with air includes
several hundreds of elementary reactions involving several tens of reactive species. If one
follows the traditional moment approach by decomposing each scalar concentration into
its mean and fluctuation then it is clear that several tens of partial differential equations
for the conservation of mean scalar concentration need to be solved. These equations
will involve many correlations of fluctuations requiring closure models with a large set of
model parameters. More importantly, the highly non-linear reaction rate is difficult to close
accurately. To put this issue in a clear perspective, let us consider an elementary chemical
reaction R1 + R2 → P, involving two reactants and a product. The law of mass action would
give the instantaneous reaction rate for R1 as ω̇1 = −A Tbρ2Y1Y2 exp (−Ta/T), where A is
a pre-exponential factor and Ta is the activation temperature. The temperature is denoted as
T and the mass fractions of two reactants are respectively denoted by Y1 and Y2. Let us take
b = 0 for the sake of simplicity. In variable density flows, it is normal to use density-weighted
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means, defined, for example for mass fraction of reactant R1, as Ỹ1 = ρ Y1/ρ and its fluctuation
y′′1 . Substituting this decomposition into the above reaction rate expression, one obtains

ω̇1 = ω̇1 + ω̇′1 = −A ρ2
(

Ỹ1 + y′′1
) (

Ỹ2 + y′′2
)

exp
(
− Ta

T̃ + T”

)
. (1)

The exponential term can be shown (Williams, 1985) to be

exp

(
−Ta

T̃(1 + T”/T̃)

)
= exp

(−Ta

T̃

)
×

(
∞

∑
m=0

(−1)m

m!

(
Ta

T̃

)m
[

∞

∑
n=1

(−1)n

(
T”

T̃

)n]m)
. (2)

Since Ta/T̃ is generally large, at least about 20 terms in the above expansion are required
to have a convergent series. This is impractical and also T”/T̃ is seldom smaller than 0.01
in turbulent combustion to neglect higher order terms in the above expansion. There are
already some approximations made while writing Eq. (1) and furthermore, while averaging
this equation to get ω̇ one must not forget that ρ exp(−Ta/T) �= ρ exp(−Ta/T̃).
It is clear that one needs to solve a large set of coupled partial differential equations
with numerous model parameters, which poses a serious question on the accuracy and
validity of computed solution using the classical RANS approach which usually tracks the
first two moments for each of the quantities involved. This is a well-known problem in
turbulent combustion and alternative approaches have been developed in the past (Echekki &
Mastorakos, 2011; Libby & Williams, 1994; Swaminathan & Bray, 2011). The first two statistical
moments of one or two key scalars are computed instead of solving hundreds of partial
differential equations for the statistical moments and correlations of all the reactive scalars.
The statistics of the two key scalars, typically a mixture fraction, Z, and reaction progress
variable, c, are then used to estimate the thermo-chemical state of the chemically reacting
mixture using modelling hypothesis. Many modelling approaches have been proposed in
the past and the readers are referred to the books by Libby & Williams (1994), Peters (2000),
Echekki & Mastorakos (2011), and Swaminathan & Bray (2011). Approaches relevant for lean
premixed and partially premixed flames are briefly reviewed in later parts of this chapter.
The three computational paradigms generally used to study turbulent combustion are (i)
direct numerical simulation (DNS), (ii) large eddy simulation (LES) and (iii) RANS. These
approaches have their own advantages and disadvantages. For example, the detail and level
of information available for analysis decreases from (i) to (iii). Thus DNS is usually used for
model testing and validation and it incurs a heavy computational cost because it resolves all
the length and time scales (in the continuum sense) involved in the reacting flow. The general
background of DNS is discussed elsewhere (Chapter ??) in this book. With the advent of
Tera- and Peta-scale computing, it is becoming possible to directly simulate laboratory scale
flames with hundreds of chemical reactions. However, direct simulations of practical flames
in industry are not to be expected in the near future.
On the other hand, in RANS all the scales of flow and flame are modelled and thus it provides
only statistical information and it is possible to include different level of chemical kinetics
detail as will be discussed later in this chapter. If the RANS simulations are performed
carefully, they provide solutions with sufficient accuracy to guide the design of combustors
and engines. These simulations are cost effective and quick, and thus they are attractive for
use in industries.
The LES is in between these two extremes as it explicitly computes large scales in the flow and
it is well suited for certain class of flows. Still models are required for quantities related to

137Modelling of Turbulent Premixed and Partially Premixed Combustion



4 Will-be-set-by-IN-TECH

small scales. The general background of LES is discussed in Chapter ?? of this book. It should
be noted that combustion occurs in scales much smaller than those usually captured in LES
and thus they need to be modelled. Most LES models are based on RANS type modelling
and this chapter presents combustion modelling for the RANS framework. The details of
turbulent combustion modelling depend on the combustion regime, which is determined by
the relativity of characteristic scales of turbulence and flame chemistry.

1.2 Regimes in turbulent premixed combustion
The characteristic flame scales are defined using the unstrained planar laminar flame speed,
s0

L, and Zeldovich flame thickness given by δ = D/s0
L, where D is a molecular diffusion

coefficient. Using these velocity and length scales, one can define the flame time scale as
tF = δ/s0

L. The turbulence scales are defined using turbulent kinetic energy, k̃ = 0.5ρ u′′i u′′i /ρ,
and its dissipation rate, ε̃ = 2ρ νsijsij/ρ (strictly 2ρ ν(sijsij − siisii/3/ρ for combusting flows),
where sij is the symmetric part of the turbulent strain tensor and ν is the kinematic viscosity

of the fluid. The characteristic turbulence length and time scales are respectively Λ = k̃1.5/ε̃

and tT = k̃/ε̃. The RMS of turbulent velocity fluctuation is u′ =
√

2k̃/3. The viscous
dissipation scales are the Kolmogorov scales given by lη = (ν3/ε̃)1/4 and tη = (ν/ε̃)1/2.
For the sake of simplicity, let us take equal molecular diffusivities for all reactive species and
the Schmidt number to be unity. One can combine these characteristic scales to form three
non-dimensional parameters, turbulence Reynolds, Damköhler and Karlovitz numbers, given
respectively by

Re =
u′Λ
s0

Lδ
, Da =

tT

tF
=

(Λ/δ)

(u′/s0
L)

and Ka =
tF

tη
=

(
δ

Λ

)1/2
(

u′

s0
L

)3/2

. (3)

Figure 1 illustrates the relationship between these three parameters in (u′/s0
L)-(Λ/δ) space.

This diagram is commonly known as combustion regime diagram (Peters, 2000). The left
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Fig. 1. Turbulent Premixed Combustion Regime Diagram

bottom corner, below Re = 1 line, represents laminar flames. For u′/s0
L < 1, turbulent

fluctuation due to large eddy cannot compete with the flame advancement by the laminar
flame propagation mechanism, thus laminar flame propagation dominates over flame front
wrinkling by turbulence. For u′/s0

L > 1 and Ka < 1, the flame scales are smaller than
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all the relevant turbulent scales. As a result, turbulent eddies cannot disturb the inner
reactive-diffusive structure but only wrinkle it and the flame also remains quasi-steady.
The Ka = 1 line represents that the flame thickness is equal to the Kolmogorov length
scale, which is known as the Klimov-Williams line. Although the Kolmogorov scales are
smaller than the flame thickness, the inner reaction zone is expected to be undisturbed by
the small scale turbulence when Ka < 100. However, the preheat zones are disturbed by the
small-scale turbulence. This regime is known as thin reaction zones regime. When Ka > 100,
the Kolmogorov eddies can penetrate into the inner reaction zones causing local extinction
leading to distributed reaction zones. However, evidence for these reaction zones are sparse
(Driscoll, 2008). Also shown in the diagram are the combustion regimes for practical engines
(Swaminathan & Bray, 2011). The spark ignited internal combustion engines operate in the
border between corrugated flamelets and thin reaction zones regimes, whereas the power gas
turbines operate in the border between corrugated and wrinkled flamelets. Aero engines do
not operate in premixed mode for safety reasons and if one presumes a premixed mode for
them then they are mostly in thin reaction zones regime.

2. Modelling framework for turbulent flames

In the RANS modelling framework, the conservation equations for mass, momentum, energy
and the key scalar values are averaged appropriately. These equations are solved along with
models and averaged form of state equation. As noted earlier, density weighted average is
used for turbulent combustion and the Favre averaged mass and momentum equations are
given by

∂ρ

∂t
+

∂ρũi

∂xi
= 0, (4)

∂ρũi

∂t
+

∂ρũiũj

∂xj
= − ∂p

∂xi
−

∂(ρu′′i u′′j )
∂xj

+
∂τij

∂xj
, (5)

in the usual nomenclature. In adiabatic and low speed (negligible compressibility effects)
combustion problems, the Favre averaged total enthalpy equation given by

∂ρh̃
∂t

+
∂ρh̃ũj

∂xj
= −

∂(ρ h′′u′′j )
∂xj

+
∂

∂xj

(
ρD ∂h

∂xj

)
, (6)

for the reacting mixture is solved. The total enthalpy h̃ is defined as h̃ = ∑i Ỹih̃i, where Ỹi is
the Favre averaged mass fraction of species i. The specific enthalpy of species i is

h̃i = h0
i +

∫ T̃

T0

cp,i dT̃, (7)

where the standard specific enthalpy of formation for species i and its specific heat capacity
at constant pressure are respectively h0

i and cp,i. The equation (7) is used to calculate the
temperature, T̃, from the computed values of h̃. The state equation is given by p = ρ R T̃,
where R is the gas constant. One must also know the mean mass fraction fields, which are
obtained using combustion modelling.
The two key scalars used in turbulent combustion are the mixture fraction, Z, and reaction
progress variable, c. These two scalars are defined later and the transport equation for their
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Favre averaged values are respectively given by

∂ρZ̃
∂t

+
∂ρZ̃ũj

∂xj
= −

∂(ρ Z′′u′′j )
∂xj

+
∂

∂xj

(
ρDz

∂Z
∂xj

)
. (8)

and
∂ρc̃
∂t

+
∂ρc̃ ũj

∂xj
= ω̇c −

∂(ρ c′′u′′j )
∂xj

+
∂

∂xj

(
ρDc

∂c
∂xj

)
. (9)

The Reynolds stress, ρ u′′i u′′j , and fluxes in Eqs. (5) to (9) and the mean reaction rate, ω̇c, of
c need closure models. In principle, all of the above equations are applicable to both RANS
and LES, and the correlations must be interpreted appropriately. The Reynolds fluxes are

typically closed using gradient hypothesis, which gives, for example, ˜u′′j Z′′ = −DT∂Z̃/∂xj ,
whereDT is the turbulent diffusivity. This quantity and the Reynolds stress are obtained using
turbulence modelling.

2.1 Turbulence modelling
The modelling of turbulence is an essential part of turbulent combustion calculation using
CFD. A variety of turbulence models are available in the literature (Libby & Williams, 1994;
Swaminathan & Bray, 2011, see for example) and an appropriate choice should be guided by
a physical understanding of the flow. A standard two-equation model like k-ε model can be
used to model simple free shear flows. In this model, the Reynolds stress is related to the eddy
viscosity, μT, by

ρu′′i u′′j = −μT

(
∂ũi

∂xj
+

∂ũj

∂xi
− 2

3
δij

∂ũm

∂xm

)
+

2
3

ρ̄k̃δij. (10)

However, complex geometries might require improved models, such as transported Reynolds
stress, to capture the relevant flow features such as flow recirculation, the onset of flow
separation and its reattachment, etc. These advanced models are known to cause difficulties
such as numerical instability during simulations compared to the two-equation models.
Furthermore, the two-equation models are commonly used because, (i) they are easy to
implement and use, (ii) numerically stable and (iii) provide sufficiently accurate solution to
guide the analysis of turbulent flames, provided the mean reaction rate and turbulence-flame
interactions are modelled correctly. Two variants of two-equation model commonly used in
turbulent premixed flame calculations are discussed briefly next.

2.1.1 k-ε Model
Despite the advancement in understanding and modelling of the turbulence, the standard
k-ε model is still one of the most widely used models for engineering calculations. The
attractiveness of this model is rooted in its simplicity and favourable numerical characteristics,
more importantly, in its surprisingly good predictive capabilities over a fair range of flow
conditions. It represents a reasonable compromise between accuracy and cost while dealing
with various flows.
Transport equations for the standard k-ε model are (Jones, 1994)

∂ρ k̃
∂t

+
∂ρ ũj k̃

∂xj
=

∂

∂xj

[(
μ +

μT

Sck

)
∂k̃
∂xj

]
− ρ u′′i u′′j

∂ũi
∂xj

− u′′j
∂p
∂xj

+ p′
∂u′′i
∂xi

− ρε̃, (11)
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∂ρε̃

∂t
+

∂ρũj ε̃

∂xj
=

∂

∂xj

[(
μ +

μt

Scε

)
∂ε̃

∂xj

]
− Cε2ρ

ε̃2

k̃

−Cε1ρu′′i u′′j
ε̃

k̃

∂ũi
∂xj

− Cε1u′′j
ε̃

k̃

∂p
∂xj

+ Cε1
ε̃

k̃
p′

∂u′′i
∂xi

, (12)

where μt is the turbulent eddy viscosity calculated as μt = ρCμ k̃2/ε̃ and Scm is the turbulent
Schmidt number for quantity m. The standard values of these model parameters are Cμ =
0.09, Cε1=1.44 and Cε2=1.92. The pressure-dilation term can become important in turbulent
premixed flames and it is modelled as (Zhang & Rutland, 1995)

p′
∂u′′i
∂xi

= 0.5c̃
(

τs0
L

)2
ω̇c, (13)

where τ is the heat release parameter defined as the ratio of temperature rise across the
flame front normalised by the unburnt mixture temperature. The average value of the Favre

fluctuation is obtained as u′′j = τ ˜u′′j c′′/(1 + τc̃) (Jones, 1994).

2.1.2 Shear stress transport k-ω model
The Reynolds stress is closed using Eq. (10) in the approach also, but the eddy viscosity is
obtained in a different manner as described below. The shear stress transport k-ω model
proposed by Menter (1994) aims to combine the advantages in predictive capability of both
the standard k-ε model in the free shear flow and the k-ω model, originally proposed by Wilcox
(1988), in the near wall region. There are two important ingredients in this model. Firstly, a
blending function, F1, is used to appropriately activate the k-ε model in free shear flow part
and the k-ω model in near wall region of the flow. Secondly, the definition of eddy viscosity
is modified to include the effects of the principal turbulent stress transport. In this method,
the turbulent kinetic energy equation is very similar to Eq. (11) and ε̃ equation is replaced by
a transport equation for ω̃ = ε̃/k̃. This equation is obtained using Eqs. (11) and (12) and is
written as

∂ρ ω̃

∂t
+

∂ρ ũjω̃

∂xj
=

∂

∂xj

[(
μ +

μt

Scω

)
∂ω̃

∂xj

]
− βρ̄ω̃2 + 2ρ(1− F1)σω2

1
ω̃

∂k̃
∂xj

∂ω̃

∂xj

− α̂

νt

(
ρu”

i u”
j

∂ũi
∂xj

+ u”
i

∂p
∂xi

− p′
∂u”

i
∂xi

)
, (14)

where α̂ , β and σω2 are model constants given by Menter (1994). The turbulent eddy viscosity
is obtained using

νt =
μt

ρ
=

a1 k̃
max(a1ω̃; ΩF2)

, (15)

where F2 is a function taking a value of one in boundary layer and zero in free shear region
of wall bounded flows, and Ω = abs(∇ × ũ). A number of other turbulence modelling
approaches are discussed by Pope (2000) and interested readers can find the detail in there.
The combustion sub-modelling is considered next.
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3. Combustion sub-modelling

As noted earlier, the governing equations for thermo-chemical state of the reacting mixture can
be reduced to one or two key scalars. The reaction progress variable is usually the key scalar
for lean premixed flames. It is usually defined using either normalised fuel mass fraction or
normalised temperature. Alternative definition using the sensible enthalpy have also been
proposed in the literature (Bilger et al., 1991). Here, the progress variable is defined using
temperature as c = (T − Tu)/(Tb − Tu) where, Tb and Tu, are the adiabatic and unburnt
temperatures respectively. A transport equation for the instantaneous progress variable can
be written as (Poinsot & Veynante, 2000)

∂ρ c
∂t

+
∂ρ c uj

∂xj
=

∂

∂xj

(
ρDc

∂c
∂xj

)
+ ω̇c. (16)

By averaging the above equation, one gets the transport equation for c̃ given as Eq. (9), which

needs closure for the turbulent scalar flux, ˜u′′j c′′, and the mean reaction rate, ω̇c. Many past
studies (Echekki & Mastorakos, 2011; Libby & Williams, 1994; Swaminathan & Bray, 2011,
see for example) have shown that the scalar flux can exhibit counter-gradient behaviour
in turbulent premixed flames. The counter-gradient flux would yield a negative turbulent
diffusivity and mainly arises when the local pressure forces accelerate the burnt and unburnt
mixtures differentially due to their density difference. This phenomenon is predominant in
low turbulence level, when u′/s0

L is smaller than about 4, where thermo-chemical effects
overwhelms the turbulence. Bray (2011) has reviewed the past studies on the scalar flux and
has noted that the transition between gradient and non-gradient transport in complex flows
deserves further investigation. However, it is quite common to model this scalar flux as a
gradient transport in situations with large turbulence Reynolds number. The closure for ω̇c
in Eq. (9) is central in turbulent premixed flame modelling. Many closure models have been
proposed in the past and they are briefly reviewed first before elaborating on the strained
flamelet approach.

3.1 Eddy break-up model
This model proposed by Spalding (1976) is based on phenomenological analysis of scalar
energy cascade in turbulent flames with Re � 1 and Da � 1. The mean reaction rate is
given by ω̇ = CEBUρ ε̃ c̃′′2/k̃, where CEBU is the model parameter (Veynante & Vervisch, 2002).
The large values of Re and Da implies that the combustion is in the flamelets regime where the
flame front is thinner than the small scales of turbulence. In this regime, the variance can be
written as c̃′′2 = c̃(1− c̃) and the reaction is assumed to be fast. This fast chemistry assumption
does not hold in many practical situations and thus this model tends to over predict the mean
reaction rate. Furthermore, this model does not consider the multi-step nature of combustion
chemistry. A variant of this approach, known as eddy dissipation concept, is developed
with provisions to include complex chemical kinetics (Ertesvag & Magnussen, 2000; Gran &
Magnussen, 1996).

3.2 Bray-Moss-Libby model
This model (Bray, 1980; Bray & Libby, 1976; Bray & Moss, 1977) uses a reaction progress
variable and its statistics for thermo-chemical closure. An elaborate discussion of this
modelling can be found in many books (Bray, 2011; Libby & Williams, 1994, for example). The
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basic assumption in this approach is that the turbulent flame front is thin and the turbulence
scales do not disturb its structure. This allows one to partition the marginal probability density
function (PDF) of c into three distinct portions; fresh gases (0 ≤ c ≤ c1), burnt mixtures
((1− c1) ≤ c ≤ 1) and reacting mixtures (c1 ≤ c ≤ (1− c1)) with probabilities α(x, t), β(x, t)
and γ(x, t) respectively, obeying α + β + γ = 1. In the limit of c1 → 0, the Reynolds PDF of c
can be written as

P(c; x, t) = αδ(c) + βδ(1− c) + γ f (c; x, t), (17)

where the fresh gases and fully burnt mixtures are represented by the Dirac delta functions
δ(c) and δ(1− c) respectively. The progress variable is defined as c = (T − Tu)/(Tb − Tu).
The interior portion, f (c; x, t), of the PDF represents the reacting mixture and it must satisfy∫ 1

0 f (c; x, t) dc = 1. If the flame front is taken to be thin then γ � 1 when Da � 1. Under this
condition, it is straightforward to obtain α = (1− c̃)/(1+ τc̃) and β = (1+ τ)c̃/(1+ τc̃) using
ρ =

∫
ρ P dc with ρ/ρ = (1 + τc̃)/(1 + τ c). Now, the mean value of any thermo-chemical

variable can be obtained simply as ϕ̃(x) =
∫

ϕ(x) P̃(c; x) dc = (1− c̃)ϕu + c̃ϕb, where the
Favre PDF is given by P̃ = ρ P/ρ and the mean density is ρ = ρu/(1 + τc̃).
Since the reaction rate is zero everywhere outside the reaction zones, its mean value,

ω̇c = γ
∫ 1−c1

c1

ω̇c(c) f (c; x) dc, (18)

is proportional to γ. Since γ has been neglected in the above analysis, alternative means are
to be devised to estimate the mean reaction rate. One method is to treat the progress variable
signal as a telegraphic signal (Bray et al., 1984). This analysis yields that the mean reaction
rate is directly proportional to the frequency of undisturbed laminar flame front crossing a
given location in the turbulent reacting flow. More detail of this analysis and its experimental
verification is reviewed by Bray & Peters (1994). In another approach, the turbulent flame
front is presumed to have the structure of unstrained planar laminar flame and this approach
(Bray et al., 2006) gives a model for the mean reaction rate as

ω̇c =
ρu s0

L
δ∗L

ε c̃(1− c̃)
1 + τc̃

. (19)

The symbol δ∗L is a laminar flame thickness defined as δ∗L =
∫

c(1− c)/(1 + τc) dn, where n is

the distance along the flame normal. The small parameter ε, defined as ε = 1− c̃”2/[c̃(1− c̃)],
is related to γ. This implies that one must also solve a transport equation for the Favre
variance, which is given in section 4 as Eq.(30). The Favre variance of c is equal to c̃(1− c̃)
when γ is neglected and the bimodal PDF is used. This simply means that ε = 0 for
Eq. (19) which also concurs our earlier observation on the mean reaction rate closure. The
variance transport equation, Eq. (30), reduces to a second equation for c̃ when γ is neglected
and a reconciliation of these two transport equations led (Bray, 1979) to the conclusion that
the mean reaction rate is directly proportional to the mean scalar dissipation rate, ε̃c =

ρDc(∇c” · ∇c”)/ρ, and

ω̇c =
2

2Cm − 1
ρ ε̃c, (20)

where Cm typically varies between 0.7 and 0.8 for hydrocarbon-air flames. The mean scalar
dissipation rate is an unclosed quantity and if one uses a classical model, ε̃c = Cdc̃”2(ε̃/k̃), for
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it then one gets

ω̇c =
2 Cd

2Cm − 1

(
ε̃

k̃

)
ρ c̃′′2, (21)

which is very similar to the eddy break-up model discussed in section 3.1.

3.3 Flame surface density model
In this approach (Marble & Broadwell, 1977), the mean reaction rate is expressed as the
product of reaction rate per unit flame surface area, ρu sL, and the flame surface area per
unit volume, Σ, which is known as the flame surface density (FSD). The straining, bending,
wrinkling and contortion, collectively called as stretching, of the flame surface by turbulent
eddies can influence the flame front propagation speed and thus it is quite useful and usual
to write sL = s0

L I0, where I0 is known as the stretch factor, which is typically of order one. The
FSD approach has been studied extensively and these studies are reviewed and summarised
by Veynante & Vervisch (2002) and in the books edited by Libby & Williams (1994), Echekki
& Mastorakos (2011) and Swaminathan & Bray (2011). Two approaches are normally used to
model Σ; in one method an algebraic expression (Bray & Peters, 1994; Bray & Swaminathan,
2006) is used and in another method a modelled differential equation is solved. A simple
algebraic model proposed by Bray & Swaminathan (2006) is given as

Σgδ0
L = δ0

L

∫ 1

0
Σ(c; x) dc =

2CDc

(2Cm − 1)
ρ

ρu

(
1 +

2
3

Cεc so
L√

k̃

)(
1 +

CD ε̃ δo
L

CDc k̃ so
L

)
c̃′′2, (22)

with the three model parameters which are of order unity. When Da � 1,
CD ε̃ δo

L/(CDc k̃ so
L) � 1, suggesting that the generalised FSD scales with the laminar flame

thickness rather than the turbulence integral length scale, Λ. Many earlier algebraic models
discussed by Bray & Peters (1994) suggest a scaling with Λ. An algebraic FSD model has also
been deduced using fractal theories by Gouldin et al. (1989).
The unclosed transport equation for FSD was derived rigorously by Candel & Poinsot (1990)
and Pope (1988) and this equation is written, when there is no flame-flame interaction, as

∂Σ
∂t

+
∂ũjΣ
∂xj

+
∂〈u′′j 〉sΣ

∂xj
+

∂〈sdnj〉sΣ
∂xj

= 〈Φ〉sΣ, (23)

where 〈· · · 〉s denotes the surface average. The three flux terms on the left hand side are due
to the mean flow advection, turbulent diffusion and flame displacement at speed sd. The
last three terms in the above equation require modelling and usually the propagation term
is neglected in the modelling, which may not hold at all situations. The turbulent diffusion
is usually modelled using gradient flux hypothesis. The term on the right hand side is the
source or sink term for Σ due to the effects of turbulence on the flame surface. The quantity Φ
is usually called as flame stretch which is a measure of the change in the flame surface area,
A, and is given by (Candel & Poinsot, 1990)

Φ ≡ 1
ΔA

d(ΔA)

dt
= (δij − ninj)eij + sd

∂ni
∂xi

= aT + 2sdkm, (24)

where km is the mean curvature of the flame surface, eij is the symmetric strain tensor and ni
is the component of the flame normal in direction i. Turbulence, generally, has the tendency
to increase the surface area implying that the average stretch rate is positive. However, the
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curvature term is negative because sd is negatively correlated to km, while the tangential
strain rate, aT, is positive (Chakraborty & Cant, 2005; Trouvé & Poinsot, 1994). Thus, to have
〈Φ〉s > 0 the magnitude of the surface averaged tangential strain rate must be larger than or
equal to the magnitude of 〈2sdkm〉s. The mean curvature of the flame surface was observed
to be around zero in a number of studies (Baum et al., 1994; Chakraborty & Cant, 2004;
Echekki & Chen, 1996; Gashi et al., 2005). However, fluctuation in the flame surface curvature
contributes to the dissipation of the surface area. The modelling of aT is also typically done
by splitting the contributions into mean and fluctuating fields and obtaining accurate models
for the various contributions to the flame surface density has been the subject of many earlier
studies (Chakraborty & Cant, 2005; Peters, 2000; Peters et al., 1998). The FSD method has also
been developed for LES of turbulent premixed flames and these works are summarised by
Vervisch et al. (2011) and Cant (2011).

3.4 G-equation, level set approach
A smooth function G, such that G < 0 in unburnt mixture, G > 0 in burnt mixture, and
G = Go = 0 at the flame, is introduced for premixed combustion occurring in reaction-sheet,
wrinkled flamelets, regime. A Huygens-type evolution equation can be written for the
instantaneous flame element as (Kerstein et al., 1988; Markstein, 1964; Williams, 1985)

∂G
∂t

+ uj
∂G
∂xj

= sG

(
∂G
∂xi

∂G
∂xi

)1/2
, (25)

where sG is the propagation speed of the flame element relative to the unburnt mixture.
This propagation speed may be expressed in terms of s0

L corrected for stretch effects using
Markstein number. This number is a measure of the sensitivity of the laminar flame speed
to the flame stretch (Markstein, 1964). Peters (1992; 1999) has developed this approach for
corrugated flamelets and thin reaction zones regimes of turbulent premixed combustion
and also proposed (Peters, 2000) sG expressions suited to these regimes. Using the above

instantaneous equation, Peters (1999) deduced transport equations for G̃ and G̃”2, which can
be used in RANS simulations (Herrmann, 2006, see for example). The development and use
of this method for LES has been reviewed by Pitsch (2006). A close relationship between the
G field and the FSD is shown by Bray & Peters (1994) as

Σ(x) =

〈(
∂G
∂xi

∂G
∂xi

)1/2
∣∣∣∣∣G = Go

〉
P(Go; x), (26)

where P(G; x) is the PDF of G and an approximate expression has been proposed for P(Go; x)
by Bray & Peters (1994).

3.5 Transported PDF approach
In this method, a transport equation for the joint PDF of scalar concentrations is solved
along with equations for turbulence quantities. The transport equation for the joint PDF
has been presented and discussed by Pope (1985). The attractive aspect of this approach
is that the non-linear reaction rate is closed and does not require a model. However, the
molecular flux in the sample space, known as micro-mixing, needs a closure model and
many models are available in the literature. These models are discussed by Haworth &
Pope (2011), Lindstedt (2011) and Dopazo (1994). The micro-mixing is directly related to the
conditional dissipation. This dissipation rate, for example for the progress variable, is defined
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as 〈Nc|ζ〉 = 〈D∇c · ∇c|ζ〉, where ζ is the sample space variable for c. The predictive ability of
this method depends largely on the quality of the models used for the unclosed terms.
The joint PDF equation is of (N + 4) dimensions for unsteady reacting flows in three spatial
dimensions involving (N − 1) reactive scalars and temperature. This high dimensionality of
the PDF transport equation poses difficulties for numerical solution. Also the molecular flux
term will have a negative sign which precludes the use of standard numerical approaches
such as the finite difference or the finite volume methods, and the Monte-Carlo methods
(Pope, 1985) are generally used to solve the PDF transport equation. In this method, the
computational memory requirement depends linearly on the dimensionality (number of
particles used) of problem but one needs a sufficiently large number of particles to get a good
accuracy.

3.6 Presumed PDF method
The marginal PDF of the key scalars are presumed to have a known shape, which is
determined usually using computed values of the first two moments, mean and variance.
A Beta function is normally used and it is given by

P̃(ζ; x) =
ζ(a−1)(1− ζ)(b−1)

β̂(a, b)
, (27)

where a and b are related to the first and second moments of the key scalar ϕ, with sample
space variable ζ, by

a =
ϕ̃2(1− ϕ̃)

ϕ̃”2
− ϕ̃ and b =

a(1− ϕ̃)

ϕ̃
. (28)

The normalising factor β̂ is the Beta function (Davis, 1970), which is related to the Gamma
function given by

β̂(a, b) =
∫ 1

0
ζ(a−1)(1− ζ)(b−1) dζ =

Γ(a)Γ(b)
Γ(a + b)

. (29)

This presumed form provides an appropriate range of shapes: if a and b approach zero in the
limit of large variance then the PDF resembles a bimodal shape of the BML PDF in section 3.2,
which requires only the mean value, ϕ̃. In the limit of small variance, Eq. (27) develops a
mono-modal form with an internal peak and it has been shown by Girimaji (1991) that this
PDF behaves likes the Gaussian when the variance is very small.
The variance equation is written as

∂ρc̃′′2
∂t

+
∂ρũj c̃′′2

∂xj
=

∂

∂xj

[(
Dc +

μt

Scc

)
∂c̃′′2
∂xj

]
− 2ρ˜u′′i c′′ ∂c̃

∂xi
− 2ρ ε̃c + 2ω̇′′c c′′. (30)

using the standard notations. The contributions from the scalar flux, dissipation rate and
the chemical reactions denoted respectively by the last three terms in the above equation,
need to be modelled. The modelling of scalar dissipation rate is addressed in many recent
studies, which are discussed by Chakraborty et al. (2011). This quantity is typically modelled
using turbulence time scale as has been noted in section 3.2 but, this model is known to be
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inadequate for premixed and partially premixed flames. A recent proposition by Kolla et al.
(2009) includes the turbulence as well as laminar flame time scales and this model is given by

ε̃c =
1
β
′

[
(2K∗c − τC4)

s0
L

δ0
L
+ C3

ε̃

k̃

]
c̃′′2, (31)

where, β′ is 6.7 and K∗c /τ is 0.85 for methane-air combustion. The parameters C3 and C4 are
given by

C3 =
1.5
√

Ka
1 +

√
Ka

and C4 = 1.1(1 + Ka)−0.4. (32)

The Karlovitz number, Ka, is defined as

Ka ≡ tc

tη
� δ/s0

L√
ν/ε̃

, (33)

where tc is the chemical or flame time scale defined earlier, tη is the Kolmogorov time scale
and ν is the kinematic viscosity. The Zeldovich thickness is related to the thermal thickness by
δ0

L/δ ≈ 2(1 + τ)0.7.
In the presumed PDF approach, the reaction rate is closed as

ω̇c(x) =
∫

ω̇(c) P(c̃, c̃”2; x) dc (34)

for premixed flames and the function ω̇(c) is obtained using freely propagating laminar flame
having the same thermo-chemical attributes as that of the turbulent flame. In this approach,
it is implicit that the flame structure is undisturbed by the turbulent eddies. For partially
premixed flames, one can easily extend the above model by including the dependence of the
reaction rate on the mixture fraction as ω̇(c, Z) and thus one must integrate over c and Z space
to get the mean reaction rate after replacing the marginal PDF by the joint PDF, P(c, Z). In this
modelling practice, these two variables are usually taken to be statistically independent. More
work is required to address the statistical dependence of Z and c, and its modelling. A closure
model for the effects of chemical reaction on the variance transport, see Eq. (30), can be written
as

ω̇”c” =
∫ 1

0
ω̇(c) c P(c, x) dc− c̃

∫ 1

0
ω̇(c) P(c, x) dc. (35)

As noted earlier, the closure in Eq. (34) assumes that the laminar flame structure is undisturbed
by the turbulent eddies. The influence of fluid dynamic stretch can also be included in this
approach as suggested by Bradley (1992) using

ω̇c =
∫ ∫ ̂̇ωc(ζ, κ) dζ dκ =

∫ ∫
ω̇c(ζ) f (κ) dζ dκ = Pb

∫
ω̇c(ζ) dζ, (36)

where Pb is the burning rate factor, which can be expressed in terms of Markstein number
(Bradley et al., 2005). Recently, Kolla & Swaminathan (2010a) proposed to use the scalar
dissipation rate to characterise the stretch effects on flamelets for the following reasons, viz.,
(i) the chemical reactions produce the scalar gradient and thus the scalar dissipation rate in
premixed and stratified flames and (ii) this quantity signifies the mixing rate between hot and
cold mixtures, which are required to sustain combustion in premixed and partially premixed
flames. This method is elaborated by Kolla & Swaminathan (2010a) and briefly reviewed in
the next section.
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4. Strained flamelet model

The closure for the mean reaction rate is given as (Kolla & Swaminathan, 2010a)

ω̇ =
∫ Nc2

Nc1

∫ 1

0
ω̇c(ζ, ψ) P(ζ, ψ) dζ dψ =

∫ 1

0
〈ω̇|ζ〉 P(ζ) dζ, (37)

where ψ is the sample space variable for the instantaneous scalar dissipation rate, Nc = D(∇c ·
∇c), of the progress variable. The marginal PDF, P(ζ) is obtained from Eq. (27) using the
computed values of c̃ and c̃”2 from Eqs. (9) and (30). The conditionally averaged reaction rate
is given by

〈ω̇|ζ〉 =
∫ Nc2

Nc1

ω̇(ζ, ψ) P(ψ|ζ) dψ. (38)

The conditional PDF P(ψ|ζ) is presumed to be log-normal and ω̇(ζ, ψ) is obtained from
calculations of strained laminar flames established in opposed flows of cold reactant and hot
products. This flamelet configuration seems more appropriate to represent the local scenario
in turbulent premixed flames (Hawkes & Chen, 2006; Libby & Williams, 1982). The log-normal
PDF is given by

P(ψ|ζ) = 1
(ψ|ζ)σ√2π

exp

{
− [ln(ψ|ζ)− μ̂]2

2σ2

}
. (39)

The mean, μ̂, and variance, σ2, of ln(ψ|ζ) are related to conditional mean 〈N|ζ〉 and variance
of the scalar dissipation rate G2

N via 〈N|ζ〉 = exp(μ̂ + 0.5σ2) and G2
N = 〈N|ζ〉2 [exp(σ2)− 1].

The conditional mean of scalar dissipation rate is related to the unconditional mean through

〈N|ζ〉 ≈ ε̃c f (ζ)∫ 1
0 f (ζ)P̃(ζ)dζ

, (40)

where f (ζ) is the variation of Nc normalised by its value at the location of peak heat release
rate in unstrained planar laminar flame. A typical variation of f (ζ) is shown in Fig. 2. It
has been shown by Kolla & Swaminathan (2010a) that f (ζ) is weakly sensitive to the stretch
rate for ζ values representing intense chemical reactions and f (ζ) has got some sensitivity
to the stretch rate in thermal region of the flamelet. Despite this, the variation shown in
Fig. 2 is sufficiently accurate for turbulent premixed flame calculation and it must be also be
noted that f (ζ) will strongly depend on the thermo-chemical conditions of the flamelet. The
unconditional mean dissipation rate, ε̃c, is modelled using Eq. (31) and it is to be noted that the
model parameters and their numerical values are introduced to represent the correct physical
behaviour of ε̃c in various limits of turbulent combustion and thus they are not arbitrary.
The robustness of this model for ε̃c has been shown in earlier studies (Darbyshire et al., 2010;
Kolla et al., 2009; 2010; Kolla & Swaminathan, 2010a;b). The influence of Lewis number on
this modelling is also addressed in a previous study (Chakraborty & Swaminathan, 2010).
The mean reaction rate can now be obtained using Eq. (37) for given values of c̃, c̃”2 and
ε̃c and thus a three dimensional look up table can be constructed for use during turbulent
flame calculations. However, care must be exercised to cover a range of fully burning
flamelets to a nearly extinguished one. Such a turbulent flame calculation has been reported
recently (Kolla & Swaminathan, 2010b) and this study aims to implement this approach in a
complex, commercial type, CFD code and validate it by comparing the simulation results to
the previously published results.
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Fig. 2. Typical variation of f (ζ) with ζ from unstrained planar laminar flame. The curve is
shown for stoichiometric methane-air combustion at atmospheric conditions.

4.1 Partially premixed flame modelling
Partially premixed flame occurs if the fuel and oxidiser were mixed unevenly. As a result,
the mixture fraction Z is required to describe the local mixture composition and it is defined
following Bilger (1988) as

Z =
2ZC/WC + 0.5ZH/WH + (Zox

O − ZO)/WO

2Z f
C/WC + 0.5Z f

H/WH + Zox
O /WO

, (41)

where Zi is the mass fraction of element i with atomic mass Wi. The superscripts f and ox
refer to reference states of the fuel and oxidiser respectively. The subscripts C,H and O refer
to carbon, hydrogen and oxygen.
The transport equations for the Favre mean mixture fraction, Z̃, given as Eq. (8), and its
variance Z̃′′2, given by

∂ρZ̃′′2
∂t

+
∂ρũjZ̃′′2

∂xj
=

∂

∂xj

[(
DZ +

μt

ScZ

)
∂Z̃′′2
∂xj

]
− 2ρu′′i Z′′ ∂Z̃

∂xi
− 2ρε̃Z, (42)

are usually solved in the presumed PDF approach to obtain the local mixing related

information. The turbulent flux of the variance, ˜u′′i Z′′2, is expressed using gradient hypothesis
in the above equation. The scalar dissipation rate is modelled by assuming a constant ratio of
turbulence to scalar time scales and this model is given as

ε̃Z = Cξ

(
ε̃

k̃

)
Z̃′′2, (43)

where Cξ is a model constant and it is typically unity. The strained flamelet modelling
discussed in the previous section can be extended to turbulent partially premixed flame by
considering this flame as an ensemble of strained premixed flamelets with mixture fraction
ranging from the lean to rich flammability limits. Then, the mean reaction rate can be written
as

ω̇ =
∫ ∫ ∫

ω̇(ζ, ψ, ξ) P(ζ, ψ, ξ) dζ dψ dξ, (44)
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where ξ is the sample space variable for Z. Modelling the joint PDF P(ζ, ψ, ξ) is a challenging
task and as a first approximation, it is common to assume that ζ and ξ are statistically
independent leading to P(ζ, ψ, ξ) = P(ζ, ψ)P(ξ). One can then follow the approach suggested
by Eq. (37) to model P(ζ, ψ). The marginal PDF, P(ξ), can be obtained using a Beta PDF.
Now, the flamelet library will have five controlling parameters instead of three for the purely
premixed case. The assumption of statistical independence of Z and c may not be valid and
can be easily removed by including the covariance, ˜Z′′c′′, by solving its transport equation.
However, no reliable modelling is available yet to close this equation.
One can also extend the unstrained flamelet model, given in Eq. (34), to partially premixed
flames by including the mixture fraction in this equation. This is same as Eq. (44) after
removing ψ and the associated integral from it.

4.1.1 Assessment using DNS data
A priori assessment of the unstrained and strained flamelet modelling for partially premixed
flames is discussed in this subsection. The DNS data for a hydrogen turbulent jet lifted flame
(Mizobuchi et al., 2002) is used for this analysis. The time averaged reaction rate ω̇c of the
progress variable c, which is defined using the equilibrium value of H2O mass fraction as
c = YH2O/Yeq

H2O has been extracted from the DNS data. Figure 3 presents the radial variation
of ω̇c at two axial positions. The radial distance, r, is normalised using the fuel jet nozzle
diameter d. The values of ω̇c computed using the unstrained and strained flamelet modellings
are also shown in this figure. The means and variances required to construct the PDFs are
obtained from the DNS data for this analysis. In figure 3(a), it is clear that unstrained flamelet
model agrees well with the DNS results in the region close to the centreline, but it generally
over predicts the mean reaction rate for r/d > 1. The strained flamelet model under predicts
ω̇c for r/d < 2.5 while giving a good agreement for r/d > 2.5. At a downstream location,
figure 3(b) shows a similar trend where unstrained flamelet model over predicts ω̇c while
strained flamelet model gives a reasonable agreement. It is likely that the strain effects are
important and need to be included to give correct mean reaction rate depending on axial and
radial positions and unstrained flamelet model is insufficient. A note of caution is that the
strained flamelet model used in this assessment only includes the strain effects for rich mixture
and it is constructed with only 12 rich flamelets up to the fuel rich flammability limit. Further
work needs to be done to include the strain effects for lean flamelets and to examine the effects
of using more than 12 fuel rich flamelets. Exploring a way to combine the unstrained and
strained flamelets for partially premixed flames in a unified modelling framework need to
be addressed. Whether this approach would be sufficient or a completely different approach
would be required, is an open question. Also, the cross dissipation, ε̃cZ = ρD(∇Z” · ∇c”)/ρ,
can play important role in these kind of closure modelling for partially premixed flames (Bray
et al., 2005). It is clear that more works need to be done for partially premixed flames.

4.2 Model implementation
The implementation of the strained flamelet model into a commercial CFD software (for
example, FLUENT), which can handle complex geometries that are common in industrial
scenarios are discussed in this section. The flow and turbulence models available in
the software are utilised to provide the required information for combustion calculation.
Additional transport equations for Z̃, Z̃”2, c̃ and c̃”2 are included as user defined scalars
(UDS). A transport equation for total enthalpy, h̃, is also included to obtain spatial temperature
distribution using Eq. (7). Various sources and sinks appearing in these transport equations,
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Fig. 3. Comparison of radial variation for mean reaction rate for DNS (solid), unstrained
flamelet model (dash) and strained flamelet model (dotted) at two axial positions.

Eqs. (8), (9), (30) and (42), are calculated using user defined functions (UDFs) and the turbulent
transports are modelled using gradient hypothesis. The mean density is obtained using the
equation of state. Some discrepancies in the modelling of the Reynolds stress in the Fluent for
the mean momentum and the k-ε equations were noted and corrected for the results reported
in this study. Instructions to incorporate the UDS transport equations and UDFs are provided
in the theory and user guides of FLUENT.
It is to be noted that the choice of the progress variable is guided broadly by the flame
configuration. Progress variable definitions based on temperature or species mass fraction are
popular choices for most premixed combustion calculations as noted earlier in this chapter.
These choices are equally applicable for open as well as enclosed flames. However, if there
are heat losses to the boundary then the fuel or product mass fractions can be used to define
the progress variable. A prudent decision on the choice of the progress variable can go a long
way in obtaining accurate CFD predictions of flame related quantities.
Once an appropriate progress variable is chosen, the flamelets reaction rate, ω̇c(ζ, ψ), is
calculated using unstrained and strained laminar flames. An arbitrarily complex chemical
kinetics mechanism can be used for these calculations and GRI-3.0 is used for the flames
computed and discussed in this chapter. The PREMIX and OPPDIF suites of Chemkin
software is used for the flamelet computations. As noted earlier, reactant-to-product
configuration is used for the OPPDIF calculations. These flamelets reaction rates are then
used in Eq. (37) to obtain the mean reaction rate, ω̇, as explained in section 4. This mean
reaction rate, ω̇′′c′′ (see Eq. 35), cp, Δh0

f for the mixture, and Ỹi are tabulated for 0 ≤ c̃ ≤ 1,

0 ≤ g ≤ 1 and ε̃c,min ≤ ε̃c ≤ ε̃c,max, where g = c̃′′2/[c̃(1− c̃)]. These tabulated values are

read during a CFD calculation for the computed values of c̃, c̃”2 and ε̃c in each computational
cell. The converged fields of these three quantities can then be used to obtain the species mass
fractions, Ỹi, from the tables as a post-processing step. For a purely premixed flames, there is
no need to solve for Z̃ and Z̃”2 and for partially premixed flames one must solve for these two
quantities.

5. Sample results

Pilot stabilised Bunsen flames (Chen et al., 1996) of stoichiometric methane-air mixture with
three Reynolds number, based on bulk mean jet velocity and nozzle diameter, of 52000, 40000,
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and 24000 designated respectively as F1, F2 and F3 have been computed using the strained
flamelet model. These flames are in the thin reaction zones regime of turbulent combustion.
As noted earlier, the implementation of the strained flamelet model in a commercial CFD
software is validated here by comparing the results with those published in an earlier study
(Kolla & Swaminathan, 2010b). It is to be noted that the earlier study used a research type CFD
code with HLPA (hybrid linear parabolic approximation) discretisation schemes (Zhu, 1991)
and TDMA solver. A pressure correction based technique was used in that study while the
current study uses a density based method with Roe scheme (Roe, 1981) and a second order
accurate upwind discretisation scheme available in Fluent. The model constant Cε1 in the k-ε
model is changed from its standard value of 1.44 to 1.52 to correct for the round jet anomaly
(Pope, 1978). The turbulent Schmidt numbers for the scalar transport equations are taken to be
unity and the turbulent Prandtl number for the enthalpy equation is 0.7 for this study. Mean
axial velocity profiles at the nozzle exit measured and reported by Chen et al. (1996) are used
as the boundary condition for the inlet velocity. The profiles of RMS of turbulent velocity
fluctuations along with longitudinal length scale reported in the experimental study are used
to specify the boundary conditions for k̃ and ε̃. The numerical values for the various model
parameters for turbulence and combustion models, turbulent Schmidt and Prandtl numbers,
and the boundary conditions used in this study are consistent with those used by Kolla &
Swaminathan (2010b).

Fig. 4. The normalised mean axial velocity and turbulent kinetic energy in flame F1. Fluent
(—-) results are compared with experimental data (◦) of Chen et al. (1996) and previously
published results (- -) of Kolla & Swaminathan (2010b).

The computational results for the F1 and F3 flames are compared with previously published
results along with experimental measurements here. Figure 4 shows the normalised mean
axial velocity and turbulent kinetic energy with radial distance for three axial locations for the
flame F1. The distances are normalised by the nozzle diameter D.
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The mean axial velocity profiles computed in this study compare well with the experimental
measurements and previously published values. The centreline values of k̃/ko from the
Fluent simulation are slightly over predicted compared to the experimental values, but they
are almost the same as the values computed by Kolla & Swaminathan (2010b). However,
the Fluent calculation over predicts the shear generation of turbulent kinetic energy, which
is evident in the higher peak values seen in Fig. 4. The results shown here are grid
independent and the differences between the Fluent and previous results are acceptable, given
the difference in the numerical schemes, solutions methods and solvers used.
Radial variation of the normalised Reynolds mean temperature, c = (T − Tu)/(Tb − Tu)
and the fuel mass fraction are plotted for three axial locations in Fig. 5. The Fluent results
are compared to the calculations of Kolla & Swaminathan (2010b) and the experimental
measurements of Chen et al. (1996). The mean methane mass fraction shows good comparison
with experimental data for flame F1 and the centreline values computed using Fluent agree
with previously published values indicating that the flame length is predicted accurately. The
computed values of peak mean temperatures at x/D = 2.5 is consistently higher than the
experimental measurements, However, the peak mean temperature agrees well for x/D = 8.5
and is under predicted for x/D = 10.5. These trends are consistent with those reported by
Kolla & Swaminathan (2010b). Note that the Fluent solution predicts a higher rate of turbulent
diffusion of mean progress variable c, which results in lower mean temperature for r/D > 1.0.
This could be explained by the higher peak values of turbulence quantities computed by
Fluent. Higher values of turbulence would result in increase in the turbulent diffusivity, thus
increasing the rate of turbulent diffusion of passive scalars. Also, the Fluent code seem to
over predict the rate at which the ambient air is entrained into the reacting jet compared to the
solution of Kolla & Swaminathan (2010b).

Fig. 5. The variation of normalised mean temperature, c, and mean CH4 mass fraction (in %)
with r/D in flame F1; —- Fluent results, ◦ experimental data (Chen et al., 1996), - - published
results of (Kolla & Swaminathan, 2010b).
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Figure 6 shows the typical values of c and YCH4 computed using Fluent for flame F3 at
x/D = 8.5 as a function of normalised radial distance, r/D. The experimental measurements
and the results computed earlier are also shown for comparison. This flame has lower
Reynolds and Karlovitz numbers compared to F1 and hence thermo-chemical effects are
dominant compared to turbulence effects. The experimental data clearly shows that the peak
value of mean temperature in F3 is larger compared to F1 (cf. Figs. 5 and 6). The relative role
of the turbulence and thermo-chemistry is supposed to be naturally captured by the scalar
dissipation rate based modelling of turbulent premixed flames, which is reflected well in
the results shown in Fig. 6. There is some under prediction of the mean temperature in the
calculations using Fluent compared to the previous results, which is due to, as noted earlier,
over prediction of the entrainment rate. However, the agreement is good for r/D ≤ 1.0 and
the trend is captured correctly for r/D > 1 for the flame F3.

Fig. 6. The radial variation of c and YCH4 (in %) in flame F3; Fluent results (—), experimental
measurements (◦) and previously published results (- -).

6. Summary and future scope

In this chapter, a brief overview of various combustion modelling approaches to simulate
lean premixed and partially premixed flames is given. The focus is limited to RANS
framework because of its high usage in industry currently. The strained flamelet formulation
developed recently is discussed in some detail and important details in implementing
this model into a commercial CFD code are discussed. The results obtained for pilot
stabilised turbulent Bunsen flames using Fluent with strained flamelet model are compared
to experimental measurements and earlier CFD results. These published CFD results (Kolla &
Swaminathan, 2010b) are obtained using another CFD code employing different numerical
schemes and solver methodologies. A good comparison among the Fluent and previous
CFD results and the experimental measurements is observed. These comparisons, gives
good confidence on the implementation of the strained flamelets model and the associated
source and sink terms in the commercial CFD code, Fluent. This initial work serves
as a foundation for further studies of lean premixed, partially premixed combustion in
industry relevant combustor geometries and, turbulence and thermo-chemical conditions
using this modelling framework. Also, this implementation provides opportunities to study
self induced combustion oscillations, interaction of flame and sound, interaction of flame
generated sound waves with combustor geometries, etc., since a compressible formulation
is used in the implementation. The influence of non-unity Lewis number on this combustion
modelling framework is yet to be addressed.
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1. Introduction

Hydrodynamic stability has been a subject extensively investigated in fluid dynamics (see
Lin 1966, Drazin & Reid 1982; Godreche & Manneville 1998; Schmid & Henningson 2001,
and references therein). We still lack, however, a stability analysis capable of operationally
handling results from experiments and numerical simulations, or data taken directly from
nature. These “real problems”, as we will hereafter refer to, are in general highly nonlinear
and localized in space and time. In other words, the signal tends to be temporally intermittent,
the regions of interest may be finitely and irregularly defined, and the definition domain could
be on the move. Specific examples include atmospheric cyclogenesis, ocean eddy shedding,
vortex shedding behind bluff bodies, emergence of turbulent spots, among many others. In
this study, we present a new approach to address this old issue, and show subsequently how
this approach can be conveniently used for the investigation of a variety of fluid flow problems
which would otherwise be very difficult, if not impossible, to investigate.
Localization and admissibility of finite amplitude perturbation are the two basic requirements
for the approach. Classically, stability in terms of normal modes (e.g., Drazin & Reid 1982)
organizes the whole domain together to make one dynamical system; stability defined in
the sense of Lyapunov is measured by a norm (energy) of the perturbation over the whole
spatial domain (cf. section 2). These definitions do not retain local features. On the other
hand, many analyses have been formulated aiming at localized features, among which the
geometrical optics stability method (Lifschitz 1994) and the Green function approach for
convective/absolute instability study (Briggs 1964; Huerre & Monkewitz 1990; Pierrehumbert
& Swanson 1995) now become standard. These approaches, though localized, usually rely on
small perturbation approximation to make linearization possible.
We integrate the philosophies of the above two schools to build our own methodology, which
retains full physics, and admits arbitrary perturbation, particularly perturbation of local
dynamics, finite amplitude and variable spatial scales. The basic idea is that: The Lyapunov
type norm (energy) could be “localized” to make a spatio-temporal field-like metric. In doing
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2 Fluid Dynamics

so the stability of a system gains a “structure” (which is a more reasonable representation of
nature), and the system is organized into structures of distinct processes. The approach is
Eulerian. It does not rely on trajectory calculation for local dynamics.
The problem now becomes how to achieve the Lyapunov norm localization. In the next
section, we show how a hydrodynamic stability is defined in the Lyapunov sense, and what
the definition really implies. We then show that it could be connected to our previous work
on mean-eddy interaction within classical framework (section 3), provided that a suitable
multiscale decomposition is used. The decomposition is fulfilled with a new mathematical
machinery called multiscale window transform, (section 4), on the basis of which our instability
analysis is formulated. Sections 5-8 are devoted to the establishment of the formalism.
Toward the end of this study, we present two real problem applications. The first is
a dynamical interpretation of a rather complicated oceanic circulation which has been a
continuing challenge since 70 years ago (section 9); we will see in there that the problem
becomes straightforward within our framework. The other one is about the vortex shedding,
turbulence production, laminarization, and structure sustaining in a turbulent wake behind a
circular cylinder (section 10). This study is summarized in section 11.

2. Lyapunov stability

A fundamental definition of hydrodynamic stability was introduced by Lyapunov
(cf. Godreche and Manneville, 1998). Given a flow, let ξ = ξ(x, t) stand for a snapshot of
its state, and Ξ = Ξ(x, t) for a basic solution, which could be a fixed point or any time-varying
equilibrium (limiting cycle, for example). In the sense of Lyapunov, the stability of Ξ can be
defined as follows: For any ε > 0, if there is a δ = δ(ε) > 0, such that

‖ξ(x, t1)− Ξ(x, t1)‖ < ε, (1)

as ‖ξ(x, t0)− Ξ(x, t0)‖ < δ, (2)

for all t1 > t0, then Ξ is stable; otherwise it is unstable. Here the norm is defined to be such
that ‖ξ‖ = [∫

Ω ξTξdx
]1/2 for ξ over the whole domain Ω, where the superscript T stands for

a transpose when ξ is a vector.

Observe that, given a time interval Δ, the basic solution Ξ may be approximately understood
as a reconstruction of ξ in time on some slow manifold. In this sense, the terms in the norms
of (1) and (2) are actually the perturbations from the slow reconstruction at time instants t1
and t0, respectively. Note the norm in the definition can be essentially replaced by its square,
so the left hand sides are related to the perturbation energy growth on this interval, recalling
how the Parseval relation connects

∫
Δ(ξ − Ξ)T(ξ − Ξ) dt to the perturbation energy. (Note

(ξ − Ξ)T(ξ − Ξ) itself is not the perturbation energy.)
Another observation is about the spatial integration of the norm, which is taken over the
whole domain Ω for a closed system. It is this very integration that eliminates the local
features and accordingly makes the Lyapunov stability analysis inappropriate for localized
events. We need to see what it really means.
It has been observed in real fluid problems, particularly in atmosphere-ocean problems
(e.g., Gill 1982), that a fluid system, though complex, often displays a combination of two
independent components: a transport and a transfer. The transport component reveals itself
in a form like advection and propagation, while the transfer results in the local growth of
disturbances. One may intuitively argue that these two processes are both a kind of energy
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redistribution process. The former redistributes energy in physical space, while the latter
redistributes energy between the basic state and the perturbed state. This implies that a
transport should integrate to zero over a closed domain; in other words, it has a divergence
form in mathematical expression. The integration in the Lyapunov definition serves to
eliminate any transport process that may exist, resulting in a pure transfer component over the
domain. Therefore, underlying the Lyapunov definition is essentially about the transfer from
the basic state to the perturbation. This makes sense, as physically an instability is actually a
process of energy transfer between the two states.
Therefore, the problem of hydrodynamic stability is fundamentally a problem about the
interaction between the basic state and the perturbation, which is measured by the energy
transfer between them. The above physical clarification implies that we may localize the
Lyapunov norm if we can separate the transfer from the transport. In that case, there is no
need to take the integration, and hence the transfer thus obtained is a spatio-temporal field.
All the problem is now reduced to how to achieve the separation.

3. Mean-eddy interaction within the Reynolds decomposition framework

Liang (2007) achieved the separation within the framework of Reynolds decomposition.
Originally his formalism was developed in the statistical context, i.e., a Reynolds average
is understood as an ensemble mean or mathematical expectation with probability measure.
The idea can be best elucidated with the evolution of a passive scalar advected by an
incompressible flow v:

∂T
∂t

+∇ · (vT) = 0. (3)

Decompose T into a mean part and an eddy part:: T = T̄+ T′. It is easy to obtain the equations
governing the mean energy and eddy energy (variance) (e.g., Lesieur, 1990)

∂T̄2/2
∂t

+∇ · (v̄T̄2/2) = −T̄∇ · (v′T′) (4)

∂T′2/2
∂t

+∇ · (vT′2/2) = −v′T′ · ∇T̄. (5)

It has been a tradition to classify the energetics so that terms in a divergence form stand
out, just like what is done here. The divergence terms are conventionally understood as
the transports of the mean and eddy energies, while the other terms singled out from the
nonlinear processes are the “transfers”. However, as pointed out by Liang (2007), the right
hand sides of (4) and (5) do not cancel out—in fact, they sum to ∇ · (T̄v′T′), which is in
general not zero.1 As a result, they cannot represent the transfer process, which is by physics
a redistribution of energy between the decomposed subspaces.
In his study, Liang (2007) established a rigorous formalism for the transfer. By his result,
corresponding to (4) and (5) are the following two equations:

∂T̄2/2
∂t

+∇ ·Q0 = −Γ, (6)

1 A term∇ · v′T ′T may be added to both sides of Eq. 4 to ensure that cancellation (see, for example, Pope,
2003). But physically it is not clear where this extra term comes from, and why it should be there.
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∂T′2/2
∂t

+∇ ·Q1 = Γ, (7)

where

Q0 =
1
2

[
v̄T̄2 + T̄v′T′

]
, Q1 =

1
2

[
vT′2 + T̄v′T′

]
, (8)

Γ =
1
2

[
T̄∇ · (v′T′)− (v′T′) · ∇T̄

]
. (9)

This way the energy processes are separated into a transport, which is in a divergence form,
and a transfer Γ, which sums to zero over the decomposed subspaces. The separation is
unique. Because of the “zero-sum” property, and its similarity in form to the Poisson bracket
in Hamiltonian mechanics, Γ has been called canonical transfer,2 in distinction from other
transfers one may have encountered in the literature.
A hydrodynamic stability analysis is thus fundamentally a problem of finding the canonical transfer.
But the above Γ still cannot make the metric of hydrodynamic stability. As we argued before,
a hydrodynamic stability in the Lyapunov sense is defined with respect to a decomposition in
time. Within the Reynolds decomposition framework, this was fulfilled with a time averaging,
as Liang (2007) discussed. But the time averaging applies only when a system is stationary,
while unstable processes are in nature not stationary at all. Besides, if a decomposition is
achieved through a time averaging, the eddy energy [e.g., the 1

2 T′2 in (7)] does not have time
dependence. As a result, there would be no eddy energy growth in the Lyapunov definition.
We need to generalize the traditional mean-eddy decomposition to resolve these issues.

4. Scale window and multiscale window transform

The multiscale window transform developed by Liang and Anderson (2007) is such a
generalization. It extends the traditional mean-eddy decomposition to retain local
physics, and to allow for interactions beyond the mean and eddy processes, e.g., the
mean-eddy-turbulence interaction. This section gives it a brief introduction.

4.1 Scale window and multiscale window transform
An MWT organizes a signal into several distinct time scale ranges, while retaining its track
in physical space. These time scale ranges form mutually exclusive scale windows which we
hereafter define. The definition could be over a univariate interval, or a multi-dimensional
domain; in the context of this study, it is univariate as we only deal with time. Consider a
Hilbert space V�,j ⊂ L2[0, 1]. It is generated by {φ

j
n(t)}n=0,1,...,2j�−1, where

φ
j
n(t) =

+∞

∑
�=−∞

2j/2φ[2j(t + ��)− n + 1/2]

(n runs through {0, 1, ..., 2j�−1), φ(t) is a scaling function constructed via orthonormalization
from cubic splines (Fig. 1, see Strang and Nguyen 1997), and � = 1 and � = 2 corresponding
to the periodic and symmetric extension schemes, respectively. The periodic extension and
symmetric extension are two commonly used schemes (see Liang and Anderson, 2007). In
the spanning basis the scheme dependence is suppressed for notational simplicity, but one
should be aware of the fact that different extension schemes may give different results. For

2 Originally it was termed “perfect transfer” in Liang (2007).
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Fig. 1. (a) Scaling function φ constructed via cubic spline orthonormalization (Liang and
Anderson, 2007). (b) Basis periodized from φ.

any integers j0 < j1 < j2, it has been shown that the inclusion V�,j0 ⊂ V�,j1 ⊂ V�,j2 holds (see
Liang and Anderson, 2007). Thus a decomposition can be made such that

V�,j2 = V�,j1 ⊕W�,j1−j2
= V�,j0 ⊕W�,j0−j1 ⊕W�,j1−j2 (10)

where W�,j1−j2 is the orthogonal complement of V�,j1 in V�,j2 , and W�,j0−j1 the orthogonal
complement of V�,j0 in V�,j1 . It has been shown that V�,j0 contains scales larger than 2−j0

only, while in W�,j0−j1 and W�,j1−j2 live the scale ranges between 2−j0 to 2−j1 and 2−j1 to 2−j2 ,
respectively (Liang and Anderson, 2007). These three subspaces of V�,j2 are referred to as,
respectively, large-scale window (or mean window), meso-scale window (or eddy window),
and sub-mesoscale window (or turbulence window). More windows can be likewise defined,
but in this context, three are enough; in fact only two are concerned in most cases.
Suppose p(t) is a realization of some function in L2[0, 1], Liang and Anderson (2007) justified
that p always lies in V�,j2 for some j2 large enough. With the above basis, there is a scaling
transform:

p̂j
n =

∫ �

0
p(t)φj

n(t) dt, (11)

for any scale level j. Given window bounds j0 < j1 < j2, p then can be reconstructed on the
three windows formed above:

p∼0(t) =
2j0 �−1

∑
n=0

p̂j0
n φ

j0
n (t), (12)

p∼1(t) =
2j1 �−1

∑
n=0

p̂j1
n φ

j1
n (t)− p∼0(t), (13)

p∼2(t) = p(t)− p∼0(t)− p∼1(t), (14)

with the notations ∼0, ∼1, and ∼2 signifying respectively the corresponding large-scale,
meso-scale, and sub-mesoscale windows. As V�,j0 , W�,j0−j1 , W�,j1−j2 are all subspaces of V�,j2 ,
functions p∼0 and p∼1 can be transformed using the spanning basis of V�,j2 :

p̂∼�
n =

∫ �

0
p∼�(t) φ

j2
n (t) dt, (15)

163Multiscale Window Interaction and Localized Nonlinear Hydrodynamic Stability Analysis



6 Fluid Dynamics

for windows � = 0, 1, 2, and n = 0, 1, ..., 2j2� − 1, while keeping information only for their
corresponding windows. In doing so, the transform coefficients p̂∼�

n , though discretely
defined with n, has the finest resolution permissible in the sampling space on [0, 1]. We call
(15) a multiscale window transform, or MWT for short. With this, (12), (13), and (14) can be
written in a unified way:

p∼�(t) =
2j2 �−1

∑
n=0

p̂∼�
n φ

j2
n (t), � = 0, 1, 2. (16)

Eqs. (15) and (16) form the transform-reconstruction pair for the MWT.

4.2 Marginalization and multiscale energy
As proved in Liang and Anderson (2007), an important Parseval relation-like property of the
MWT is

∑n p̂∼�
n q̂∼�

n = p∼�(t) q∼�(t), (17)

for p, q ∈ V�,j2 , where the overline indicates an averaging over time, and ∑n is a summation
over the sampling set {0, 1, 2, ..., 2j2 − 1}. ∑n is also called “marginalization” as in a localized
analysis, properties with locality dependence summed out are usually referred to as marginal
properties (see Huang et al., 1999). Eq. (17) states that, a product of two multiscale window
transforms followed by a marginalization is equal to the product of their corresponding
reconstructions averaged over the duration. We will henceforth refer to it as property of
marginalization.
The property of marginalization ensures an efficient representation of energy in terms of the
MWT transform coefficients. In (17), let p = q, the right hand side is then the energy of
p (up to some constant factor) averaged over [0, 1]. It is equal to a summation of N = 2j2

individual objects ( p̂∼�
n )2 centered at time tn = 2−j2 n + 1

2 , with a characteristic influence
interval Δt = tn+1 − tn = 2−j2 . The energy represented at time tn then should be the mean

over the interval: (p̂∼�
n )2

Δt = 2j2( p̂∼�
n )2. Note the constant factor 2j2 is essential for physical

interpretation. But for notational succinctness, we will neglect it in the following derivations.

5. Canonical transfer with respect to the multiscale window transform

We now carry the canonical transfer (9) to a more generic framework, the MWT framework.
Consider again the evolution of a passive scalar T with a governing equation (3). Take an
MWT on both sides, and multiply by T̂∼�

n , the resulting left hand side can be shown to be Ė�
n ,

time rate of change of the (generalized) multiscale energy (variance) 1
2

(
T̂∼�

n

)2
. Here � and

n represent the window and the time location, respectively. We use a dot to indicate the time
rate of change because in performing the transform time t has been translated to the discrete
time location n, and hence the time rate of change is actually in an approximate sense. The
resulting energy equation is

Ė�
n = −T̂∼�

n ∇ ·̂(vT)
∼�

n , (18)

which should be equal to −∇ ·Q�
n + Γ�

n for some flux Q�
n and transfer Γ�

n on window � at
time step n, based on what we argued before.
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Following the same strategy adopted in Liang (2007), we first find Q�
n , the multiscale flux of

1
2 T2 by flow v on window � and time step n. In the MWT framework, it can be obtained
through reconstructing the decomposed objects. Notice that

1
2

T2 = ∑
n1,�1

∑
n2,�2

1
2
[T̂∼�1

n1
φ

j2
n1(t) T̂∼�2

n2
φ

j2
n2 (t)], (19)

where the summations are over all the possible time steps and windows. We look at the flux
of the “atom” 1

2 [T̂
∼�1
n1 φ

j2
n1 (t) T̂∼�2

n2 φ
j2
n2 (t)] by a flow v(t) (spatial dependence suppressed for

clarity) over t ∈ [0, 1] on window � at step n. It is

∫ 1

0
v(t) · 1

2
[T̂∼�1

n1
φ

j2
n1 (t) T̂∼�2

n2
φ

j2
n2 (t)]

· δ(n− n2)δ(� −�2) dt,

where δ is the Kronecker function. [Note the arguments of the δ’s can be replaced with (n− n1)
and (�−�1) without affecting the final result, as all the time steps and window indices are to
be summed out.] A flux of 1

2 T2 by v on � at n is then the sum of it over all the possible n1, n2
and �1, �2. By the definition of MWT, this is

Q�
n = ∑

n1,�1

∑
n2,�2

∫ 1

0

1
2

v(t) · T̂∼�1
n1

φ
j2
n1 (t) · T̂∼�2

n2
φ

j2
n2 (t)

· δ(n− n2)δ(�−�2) dt

=
1
2

∫ 1

0
v(t)T(t) · T̂∼�

n φ
j2
n (t) dt.

But T̂∼�
n φ

j2
n (t) lies in window �, and all the windows are mutually orthogonal, so the above

equation is equal to

1
2

∫ 1

0
(vT)∼� · T̂∼�

n φ
j2
n (t) dt.

Notice T̂∼�
n is a constant with respect to t. Factoring it out and we get, by the definition of

MWT,

Q�
n =

1
2

T̂∼�
n

̂(vT)
∼�

n . (20)

The transfer Γ is obtained by subtracting −∇ ·Q�
n from the right hand side of (18):

Γ�
n = −T̂∼�

n ∇ ·̂(vT)
∼�

n +∇ ·
[

1
2

T̂∼�
n

̂(vT)
∼�

n

]

=
1
2

[
̂(vT)

∼�

n · ∇T̂∼�
n − T̂∼�

n ∇ ·̂(vT)
∼�

n

]
. (21)

There is an important property with the transfer thus obtained. Mathematically, it is expressed
as

∑n ∑
�

Γ�
n = 0. (22)
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In fact, by the property of marginalization, (21) gives

∑nΓ�
n =

1
2

∫ 1

0

[
(vT)∼� · ∇T∼� − T∼�∇ · (vT)∼�] dt,

and because of the orthogonality between different windows, this followed by a summation
over � results in

1
2

∫ 1

0
[(vT) · ∇T − T∇ · (vT)] dt = 0.

In the above derivation, the incompressibility assumption of the flow has been used.
Property (22) states that the transfer (21) vanishes upon summation over all the windows
and marginalization over the time sampling space. Because of its similarity in form to the
Poisson bracket in Hamiltonian mechanics, we will refer it to as canonical in the future to
distinguish it from other transfers one might have met in the literature. Canonical transfers
only re-distribute energy among scale windows, without generating or destroying energy as
a whole.
The canonical transfer (21) may be further simplified in expression when T̂∼�

n is nonzero:

Γ�
n = −Ew

n ∇ ·
⎛
⎝̂(vT)

∼�

n

T̂∼�
n

⎞
⎠ , if T̂∼�

n 	= 0, (23)

where E�
n = 1

2

(
T̂∼�

n

)2
is the energy on window � at step n, and is hence always positive.

Note that (23) defines a field variable which has the dimension of velocity in physical space:

v�
T =

̂(Tv)
∼�

n

T̂∼�
n

. (24)

It may be loosely understood as a weighted average in time, with the weights derived from
the MWT of the scalar field T. For convenience, we will refer to v�

T as T-coupled velocity. The
growth rate of energy on window � is now totally determined by −∇ · v�

T , the convergence
of v�

T , and

Γ�
n = −E�

n∇ · v�
T . (25)

Note Γ�
n makes sense even though T̂∼�

n = 0 and hence v�
T does not exist. In this case, (25)

should be understood as (21). We may keep using (23) and (25) for notational simplicity and
physical clarity.

6. Connection to the formalism with respect to Reynolds decomposition

It is of interest to connect the transfer of (21) to that obtained by Liang (2007) within the
framework of Reynolds decomposition, i.e., that of (9), with an ensemble mean understood
as a time average. As the Reynolds formalism does not allow for time dependence in Γ, we
perform a marginalization on the transforms. A basic property of the MWT is that, when
j0 = 0 and a periodic extension is used for the time sequence, the field in a two-window
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decomposition is reconstructed to a mean (over time) and the deviation from the mean (see
Liang and Anderson, 2007). In that case,

∑nΓ1
n =

1
2

[
(vT)′ · ∇T′ − T′∇ · (vT)′

]

=
1
2

[
T̄∇ · (v′T′)− (v′T′) · ∇T̄

]
, (26)

where in the derivation, the decomposed version of continuity equation∇ · v̄ = 0 and∇ · v′ =
0 has been used. This is the very Γ in (7). Likewise, ∑nΓ0

n is the −Γ in (6). So the canonical
transfer of Liang (2007) is a particular case of the present formalism (21).

7. Interaction analysis

In contrast to the canonical transfer (9) resulting from the Reynolds decomposition, the
localized Γ�

n of (21) involves not only inter-window energy transfers, but also transfers from
within the same window. As an instability/stability is by definition a process between
different windows, we need to eliminate the information other than the inter-window transfer
from the Γ�

n obtained above. This is achieved through a technique called interaction analysis,
which has been used by Liang and Robinson (2005) in the MWT framework to single out the
desired processes from quadratic energetic terms.
It is observed in (21) that Γ�

n is made of terms in the form Γ�
Rpq,n = R̂∼�

n p̂q∼�
n , for R, p, q ∈

V�,j2 . Using the transform-analysis pair (15) and (16),

Γ�
Rpq,n = ∑

�1,�2

∑
n1,n2

Tr(n, � | n1, �1; n2, �2), (27)

with the basic transfer function of Γ�
Rpq,n

Tr(n, � | n1, �1; n2, �2) = R̂∼�
n

p̂∼�1
n1 q̂∼�2

n2 + p̂∼�2
n2 q̂∼�1

n1

2
̂

(φ
�,j2
n1 φ

�,j2
n2 )

∼�

n . (28)

Following the terminology of Iima and Toh (1995), Tr(n, � | n1, �1; n2, �2) represents an
interaction between the receiving mode (n, �), and giving modes (n1, �1), and (n2, �2). It gives
the energy made to the receiving mode from the two giving modes. Here both the index pairs
(n1, �1) and (n2, �2) are dummy in (27). We write in (28) 1

2
[
p̂∼�1

n1 q̂∼�2
n2 + p̂∼�2

n2 q̂∼�1
n1

]
instead of

( p̂∼�1
n1 q̂∼�2

n2 ) to ensure symmetry. Using this definition it is easy to show that the basic transfer
function of our canonical transfer Γ�

n defined in (21) satisfies a detailed balance relation which
is found in interaction analyses in a variety of contexts (cf. Lesieur 1990, Pope 2003). See
Appendix 13 for details.
Every transfer can now be viewed as an installment of the basic transfer functions. The
purpose of interaction analysis is to extract the cross-window transfer from these functions.
For instability analysis, particularly, we need to find the transfer from the mean window
(or window 0) to the eddy window (or window 1) in a two-window decomposition. For

example, if we are dealing with Γ1
Rpq,n = R̂∼1

n (̂pq)
∼1
n , the summation in (27) over �1, �2, n1, n2

organizes the product pq into four parts (see Liang and Robinson, 2005):

p∼0q∼0, p∼0q∼1, p∼1q∼0, p∼1q∼1.

167Multiscale Window Interaction and Localized Nonlinear Hydrodynamic Stability Analysis



10 Fluid Dynamics

The last part p∼1q∼1, while combined with R̂∼1
n , gives the energy transferred within the eddy

window. So it must be removed if only stability/instability is concerned. Using superscript
0 → 1 to signify an operator that selects out the transfer from window 0 to window 1, we have

(
Γ1
Rpq,n

)0→1
= R̂∼1

n

(
̂(p∼0q∼0)

∼1

n + ̂(p∼0q∼1)
∼1

n + ̂(p∼1q∼0)
∼1

n

)
. (29)

This operator can be easily applied to the canonical transfer. For example, an application to
(21) with � = 1 gives

(Γ1
n)

0→1 =
1
2

{
∇T̂∼1

n ·
[

̂(v∼0T∼0)
∼1

n + ̂(v∼0T∼1)
∼1

n + ̂(v∼1T∼0)
∼1

n

]

− T̂∼1
n ∇ ·

[
̂(v∼0T∼0)

∼1

n + ̂(v∼0T∼1)
∼1

n + ̂(v∼1T∼0)
∼1

n

]}
. (30)

8. Hydrodynamic stability analysis

Hydrodynamic stability usually concerns with the transfer process between two windows,
the large-scale window and the eddy window. But sometimes the transfer to a smaller scale
window, e.g., a turbulence window, might also be of interest. In this section, we first give
the instability identification criterion with a two-window decomposition, then in section 8.4
briefly touch the formalism with three windows.

8.1 Idealized flow
We proceed to find the criterion for instability. For an ideal (frictionless) incompressible fluid
flow, the governing equations are

∂v
∂t

= −∇ · (vv)− ∇P
ρ

, (31)

∇ · v = 0. (32)

Here we do not consider the acceleration of gravity; thus only kinetic energy is involved. This
is useful in practice unless buoyancy is perturbed. Following the procedure in section 5, it
is easy to know that the pressure term makes no contribution to the energy transfer across
scale windows in an incompressible flow. Actually, an MWT of (31) followed by a dot product
with v̂∼1

n results in a pressure working rate proportional to v̂∼1
n · ∇P̂∼1

n , which is equal to

∇ ·
(

P̂∼1
n v̂∼1

n

)
by the MWTed continuity equation. Only the nonlinear terms require some

thought for the canonical transfer.
Let the scalar T in (25) be u, v, w. We have a u-coupled velocity, a v-coupled velocity, and a
w-coupled velocity, and hence a canonical transfer on the eddy window:

Γ1
n = − 1

2

[
(û∼1

n )2∇ · v1
u + (v̂∼1

n )2∇ · v1
v + (ŵ∼1

n )2∇ · v1
w

]
.

This is well-defined even when the coupled velocities vanish. In that case, one only needs to
do an expansion with the above equation. Applying the interaction analysis to select out the
process from window 0 to window 1, the expanded equation results in a metric

Px,n =
(

Γ1
n

)0→1
= − 1

2

[
̂(vv)

∼1
n : ∇v̂∼1

n −∇ ·̂(vv)
∼1
n · v̂∼1

n

]0→1
(33)

168 Advanced Fluid Dynamics



Multiscale Window Interaction and Localized Nonlinear Hydrodynamic Stability Analysis 11

Based on the argument in the foregoing sections, a localized stability criterion consistent with
the Lyapunov definition is naturally obtained:

The system under consideration is

(i) stable at (x, n) if Px,n < 0;

(ii) unstable otherwise, and

(iii) the (algebraic) growth rate is P .

This stability criterion is stated with P in the form of a spatio-temporal field, albeit the time
dependence is discrete (n), in contrast to the bulk form in the original Lyapunov definition.

8.2 Real fluids
For a real fluid flow, one generally needs to take into account more physical effects in
the governing equations. Buoyancy, dissipation, compressibility, for example, may not be
negligible in many cases. As different problems usually have different governing equations,
it is not our intention in this study to give a universal expression of the localized stability
criterion. We just present the general strategy to obtain the metric.
The commonality of these factors is that they usually do not involve nonlinear interaction
in the multiscale energetics, so it is generally easy to incorporate their inputs into our
formulation. The key is to have the transport singled out, which is straightforward should
there be only linear processes. If buoyancy is perturbed, then potential energy must be
counted in. In that case, the system stability is dependent on the growth of perturbation
mechanic energy (kinetic energy plus potential energy), instead of just kinetic energy alone.
As an example, we show how this works when dissipation is included in (31). We choose this
example not just because of its ubiquity, but also because it will be needed in an application
later on.
Dissipation appears in Eq. (31) as an extra term ∇ · (ν∇v). In forming the energetics for
window 1, this term results in

v̂∼1
n · ∇ · (ν∇v̂∼1

n ) = ∇ · (ν∇v̂∼1
n · v̂∼1

n )− ν∇v̂∼1
n : ∇v̂∼1

n .

So the instability criterion metric now should be Eq. (33) plus the non-transport part on the
right hand side of the above equation:

Px,n = − 1
2

[
̂(vv)

∼1
n : ∇v̂∼1

n −∇ ·̂(vv)
∼1
n · v̂∼1

n

]0→1
− ν∇v̂∼1

n : ∇v̂∼1
n

= − 1
2

[(
̂(vv)

∼1
n + 2ν∇v̂∼1

n

)
: ∇v̂∼1

n −∇ ·̂(vv)
∼1
n · v̂∼1

n

]0→1
(34)

The dissipative input in Px,n always appears negative; it thus functions to reduce the local
energy transfer, as is expected. On the other hand, because of its localized feature, it might
modify the stability metric distribution, and hence lead to the emergence of some new stability
pattern.

8.3 Instability identification from a large-scale point of view
The above criterion is established based on the eddy window or window 1. Instability can
also be described from a large-scale point of view. This makes sense as a canonical transfer is
a protocol between two scale windows: If the eddy window works, we may as well equally
view the problem from the large-scale window. The advantage of a large-scale formulation is
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to have the eddy scale features filtered, for the transfer thus derived is on the balance of the
large-scale energetics. For an idealized fluid, we may define:

Px,n = +
1
2

[
̂(vv)

∼0
n : ∇v̂∼0

n −∇ ·̂(vv)
∼0
n · v̂∼0

n

]1→0
. (35)

Notice the positive sign here, compared to the negative sign in (33), as in this case, a positive
Γ0

n is toward the large-scale window. Also notice the different interaction analysis operator
1 → 0. Eqs. (35) and (33) are equivalent on the large-scale window because the transfer is
canonical. This can be easily proved with the definition of canonical transfer (22).
For real fluids, the problem is not as simple as that in the preceding subsection: The canonical
transfer and other terms to be combined are not defined on the same scale window. To
circumvent the difficulty, we first take averaging for the extra eddy scale energetic terms
over an interval in the sampling space commensurate with the large-scale window transform,
before adding these terms to the canonical transfer. As an example, consider the dissipative
case. The metric in (35) now becomes

Px,n = +
1
2

[
̂(vv)

∼0
n : ∇v̂∼0

n −∇ ·̂(vv)
∼0
n · v̂∼0

n

]1→0
− ν∇v̂∼1

� : ∇v̂∼1
� , (36)

where the averaging over � is taken in the sampling space over interval [n − 2j2−j0−1, n +
2j2−j0−1]. The instability identification criterion with P is the same as that stated in the
previous subsections. When other effects are taken into account, P can be defined likewise as
it is defined in (36).

8.4 Mean-eddy-turbulence interaction
Sometimes just two scale windows are not enough to characterize the fluid processes. For
instance, one often encounters problems involving interactions between mean, eddy, and
turbulent windows. In that case, a system could not only lose stability to fuel the growth
of the eddy events, but also transfer energy from the eddy window to the turbulence window
through another instability.
We remark that this situation is in fact already taken into account in the formalism of canonical
transfer. By (21) it is easy to obtain

Γ�
n = − 1

2

[
̂(vv)

∼�

n : ∇v̂∼�
n −∇ ·̂(vv)

∼�

n · v̂∼�
n

]
(37)

for the governing equations (31) and (32). Different instability metric can be formed by

taking the interaction analysis. For example,
(
Γ2

n
)1→2 and

(
Γ2

n
)0→2 represent, respectively,

the transfer from the eddy window to the turbulence window, and the transfer from the mean
window directly to the turbulence window.

9. Application to oceanographic studies

The above theory and methodology have been applied to problems in different fields in fluid
dynamics, such as oceanography, turbulence, fluid control, to name a few. In this section
we briefly summarize the results of Liang and Robinson (2009) on a successful application to
the dynamical interpretation of a rather complicated ocean phenomenon, the Monterey Bay
circulation.
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Fig. 2. Left: The research domain and bottom topography of Monterey Bay and its adjacent
regions for the August 2003 AOSN-II Experiment. Also shown is the location of a mooring
station (M1) within the Bay. Right: The wind vectors in August 2003 at Station M1.

Monterey Bay is a large embayment located to the south of San Francisco, California
(Fig. 2). Distinguished by its high productivity and marine life diversity, it has been arousing
enormous interest in the oceanographic community (see Liang and Robinson, 2009, and
references therein). Among the existing issues, how the Monterey Bay circulation is excited
and sustained has been of particular interest ever since the 1930s, which had been a continuing
challenge until a breakthrough was made recently by Liang and Robinson (2009), with the
aid of the afore-mentioned new machinery namely the multiscale window transform (MWT),
and an earlier version of the MWT-based stability analysis tailored for atmosphere-ocean
problems (Liang and Robinson, 2007). In their study, Liang and Robinson (2009) examined
an unprecedented dataset acquired in August 2003 during the Second Autonomous Ocean
Sampling Network (AOSN-II) Experiment, a program with the involvement of more than 10
major institutions nationwide in the United States. Out of the observational data the 4D flow
field is reconstructed in an optimal way for the duration in question using the Harvard Ocean
Prediction System (Haley et al., 2009). Shown in Fig. 3 are several snapshots of the surface
flow. As expected, it looks very complex; there seems to be no way to dynamically interpret it
with the geophysical fluid dynamics (GFD) theories available then.
Cherishing the hope that underlying the seemingly chaotic phenomena the dynamical
processes could be tractable, let us look at the canonical transfers and their evolutions. To
do this, first we need to determine the scale windows where the respective processes occur.
This is fulfilled by analyzing the wavelet spectra of some typical time series. Shown in
Fig. 4 is such a series and its spectrum. Note here we have to use orthonormal wavelets to
allow for a definition of energy in the physical sense (see Liang and Anderson, 2007). By
observation there is a clear gap between scale levels 2 and 3; accordingly j0 is chosen to be
2, which corresponds to a time scale of 2−j0 × duration = 2−2 × 32 = 8 days. Likewise, a
reasonable choice for j1 is 5, corresponding to a time scale of 1 day. (This essentially keeps the
mesoscale window free of tides.) With these parameters, the canonical transfers and hence the
stability criterion can be computed in a straightforward way. In Liang and Robinson (2007),
we have established that here the criterion actually corresponds to that for the barotropic
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Fig. 4. A time series of the surface temperature at a point off Pt. Ano Nuevo (lower panel)
and its orthonormal wavelet spectrum (upper panel). In performing the spectral analysis, the
mean has been removed for clarity.

instability in GFD. For convenience in this context, we write it as BT. Meanwhile, In (23),
replacing T by density anomaly ρ we get the canonical potential energy transfers. We are
particularly interested in the transfer from window 0 to window 1 which, if the interaction
analysis operator 0 → 1 is applied, has been proved to correspond to the baroclinic instability
identification criterion in GFD (Liang and Robinson, 2007). We shorthand it as BC henceforth.
Surprisingly, though the flow is very chaotic, both BT and BC follow a similar and quite
regular evolutionary pattern. Contoured in Fig. 5 are the 10-meter BCs at several time instants.
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Fig. 5. A time sequence of the 10-meter BC (units: m2/s3). Positive values indicate baroclinic
instability.

Clearly there are two centers of instability, the northern one lying off Pt. Ano Nuevo, another
off Pt. Sur. Generally, during the experimental period, the former gets strengthened as time
moves on, while the latter varies the opposite way. Comparing to the wind vectors (Fig. 2),
when the northwesterly (southeastward), i.e., the upwelling-favorable wind, prevails, an
instability (baroclinic and barotropic) occurs off Pt. Sur; when the wind is relaxed, the Pt. Sur
instability disappears, but the relaxation triggers another instability off Pt. Ano Nuevo. This
instability is also baroclinic and barotropic, i.e., mixed, in nature. Liang and Robinson (2009)
showed that this bimodal structure supplies two sources of mesoscale processes. The resulting
mesoscale eddies propagate northward in the form of coastal-trapped waves, with a celerity
of about 0.09 m/s. It is the mesoscale activities that make the flow pattern complex.
The above discovery is remarkable; it shows that, during the AOSN-II experimental period,
large-scale winds actually do not directly excite the Monterey Bay region circulation, in
contrast to predictions with classical theories. Rather, it stores energy in the large-scale
window, and then release to the mesoscale window through baroclinic and barotropic
instabilities. The mesoscale disturbances are organized in the form of eddies, which, once
formed, propagate northward as coastal-trapped waves. Liang and Robinson (2009) also
found that a significant upwelling event in this region is driven through nonlinear instabilities,
distinctly different from the classical coastal upwelling paradigm.

10. Application to turbulence structure studies

The above theory and methodology have also been applied to turbulence research. Here
we briefly summarize the study by Liang and Wang (2004) with a benchmark simulation
of a saturated turbulent wake behind a circular cylinder (Reynolds number: Re=3900). The
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Fig. 6. A saturated turbulent wake at Re=3900 (from Liang and Wang, 2004). Shown here is
the vorticity magnitude on a spanwise plane at t = 13.2 (arbitrary starting time after a
statistical equilibrium).

configuration is referred to Fig. 6, with x, y, and z indicating the streamwise, cross-stream,
and spanwise coordinates, respectively ((x, y) originated at the cylinder center). The variables
are nondimensionalized with the cylinder diameter d as the length scale, free-stream velocity
U∞ as the velocity scale, and d/U∞ as the time scale. The dataset for analysis is generated
using an energy-conserving, hybrid finite-difference/spectral model, as described in Mittal
and Moin (1997). Incompressible Navier-Stokes equations are solved on a C-type mesh using
a numerical scheme with second-order central differences in the streamwise and cross-stream
directions, and Fourier collocation in the spanwise direction. The subgrid processes are
parameterized with the dynamical model described in Germano et al. (1991) and Lilly (1992).
The time advancement is of the fractional step type in combination with the Crank-Nicholson
method for viscous terms and third order Runge-Kutta scheme for the convective terms. The
resulting Poisson equation for pressure is solved using a multigrid iterative procedure at each
Runge-Kutta substep. More details about the numerics are referred to Liang and Wang (2004).
Shown in Fig. 6 is a snapshot of the computed instantaneous vorticity magnitude.
To perform stability analysis for the simulation, we first determine the scale window bounds.
This is fulfilled through orthonormal wavelet spectral analysis. The needed time series are
chosen from the velocity components at several typical points within the wake. Following the
same procedure as for the above oceanographic problem, it is justified that j0 = 1 and j1 = 2,
together with a symmetric extension, serve our purpose well. Shown in Fig. 7 is the multiscale
decomposition of a typical time series–the time series of of u at point (2,−0.5, 0). On the right
hand side of the equality are the large-scale, mesoscale, and sub-mesoscale reconstructions.
Generally, turbulence problems involve complicated scale window structures. Here the
mesoscale window is characterized by amplifications of vortex shedding processes, and the
process within the sub-mesoscale window appears turbulent.
We now investigate the window interactions with the above theory on localized
hydrodynamic stability. As before, we continue to analyze from a longer-time span point of
view. That is to say, we will use (36) rather than (34) for the analysis. The results are presented
in a spanwise plane only, albeit the analysis is three-dimensional. This is justified by the fact
that in a statistical sense the flow field is equivalent spanwise.
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Fig. 8. The canonical kinetic energy transfer from the mesoscale window to the large-scale
window for the saturated turbulent wake (adapted from Liang and Wang, 2004). Negative
values (in black) indicate instability. The abscissa and ordinate are x and y, respectively.

Figure 8 is the canonical kinetic energy transfer from the meso-scale window to the large-scale
window originally computed by Liang and Wang (2004). It differs from (36) by a minus sign;
that means here negative values indicate instability. From it obviously there are two centers
of instability, each located at one side of the x-axis. These centers are permanent, though their
magnitudes do oscillate with time. In the episode as shown, the oscillations are out of phase.
The transfer center on the top flank weakens as time goes on, while on the bottom the transfer
strengthens. Another observation is that, some inverse transfers (white regions in the figure)
are found in the near and far wake, or sandwiched between the instability lobes.
It is these two centers of hydrodynamic instability that cause the shedding of the vortices.
This, however, does not correspond to what one may observe about the perturbation growth
in vortex shedding. Indeed, by computation both the maximal disturbance and the largest
disturbance growth are in the near wake along the x-axis (e.g., Liang, 2007). The discrepancy
in location between instability and disturbance growth reveals a fundamental fact in fluid
dynamics which has been mostly overlooked: Rapid amplification of perturbation does not
necessarily correspond to instability; the eddy energy, when generated, may be transported
away instantaneously and lead the perturbation to grow elsewhere. From our results, this
observation is in fact a rule rather than an exception. In other words, the causality of
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Fig. 9. As Fig. 8, but for the transfer from the sub-mesoscale window to the mesoscale
window (adapted from Liang and Wang, 2004).

perturbation growth is usually not local; what we have observed by visual inspection may
not reflect the underlying dynamical processes.
The above is about the canonical transfer between the large-scale window and the mesoscale
window. We go on to investigate that between the mesoscale and sub-mesoscale windows. In
the decomposition in Fig. 7, we have seen that this accounts for how turbulence is produced.
As above, the analysis is performed from the stance on the mesoscale window, instead of
the sub-mesoscale window, to ensure a better understanding of the dynamics on a longer
time span. The result on a spanwise plane is contoured in Fig. 9. Again, this is what was
originally obtained by Liang and Wang (2004), and differ from our previous instability metric
by a negative sign. That is to say, in the figure negative values (in black) imply instability.
Notice that here the canonical transfer is mainly within a monopole lying near the x-axis,
in contrast to the dipole structure in Fig. 8. This is interesting, for it shows that the energy
gained by the mesoscale process from the basic flow does not go directly to the sub-mesoscale
window where the turbulent structures reside. Instead, it is first transported from the two
side lobes to the center and then released to fuel the turbulence. As in Fig. 8, inverse transfers
are found in the far wake, indicating that some re-laminarization is occurring there.
The instability structures in Figs. 8 and 9 indicate that, in a saturated turbulent wake, there are
two primary instabilities, either on one side of the x-axis, followed by a secondary instability
lying in between on the axis. The primary instabilities form the mechanism for the vortex
shedding; the secondary instability derives the energy from the mesoscale window and
funnels energy to sustain the turbulence. These processes are summarized and schematized
in Fig. 10.

11. Discussion and conclusions

A localized hydrodynamic stability analysis was developed to relate stability theory to
experimental data and direct observations of nature, which are in general highly nonlinear
and intermittent in space and time. The theory was applied to the study of the wake behind a
circular cylinder, and the suppression of the vortex street formation.
We established that the Lyapunov definition of hydrodynamic stability is essentially about
the energy transfer between the mean and eddy states. A transfer is a nonlinear process in
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Secondary instability

Primary instability

Primary instability

Fig. 10. A schematic of the instability structure in a turbulent wake. The basic flow loses
energy to the mesoscale window to shed vortices via the two primary instabilities, while the
turbulent processes derive their energy from the vortices through a secondary instability
lying in between.

a flow which does not generate nor destroy energy as a whole. In the text it is referred to
as “canonical transfer”, in distinction from other transfers one may have encountered in the
literature. A hydrodynamic instability analysis is thus fundamentally a problem of finding
the canonical transfer.
The canonical transfer has been rigorously formulated within the framework of a function
analysis apparatus newly developed by Liang and Anderson (2007), i.e., the multiscale
window transform, or MWT for short. The MWT is a generalization of the classical mean-eddy
decomposition, representing a signal on subspaces or scale windows with distinct time
scale ranges. We particularly introduced a large-scale window, a mesoscale window, plus
a sub-mesoscale window when needed. Symbolically they are denoted as � = 0, 1, 2
for notational convenience. In special cases, these windows may also be referred to as
mean window, eddy window, and turbulence window, respectively. The basic idea of the
formulation is that the nonlinear process in a flow can be uniquely decomposed into a
transport (expressed in a divergence form) and a canonical transfer; if the former is found, the
latter follows accordingly. The resulting canonical transfer has a concise form in expression
in terms of MWT. In the case of a passive scalar T advected by an incompressible flow, the
energy transferred to window � can be written as Γ�

n = −E�
n∇ · vT, where E�

n is the energy

on window �, vT =
̂(vT)

∼�

n

T̂∼�
n

, and (̂·)∼�

n indicates an MWT on window �. The complicated

multiscale window interaction (mean-eddy-turbulence interaction in particular) in fluid flows
is therefore nicely characterized by this concise formula, as schematized in Fig. 11.
Hydrodynamic instability is a particular case of the above multiscale window interaction.
Take a two-window decomposition, and consider the eddy window � = 1. It is shown that
the energy transferred from the background to fuel the variance of T is Γ1

n = −E1
n∇ · vT.

The instability is then totally determined by the convergence of vT, a velocity weighted by
T in the MWT framework. The same derivation applies to the momentum equations, and a
metric P for hydrodynamic instability can be easily obtained. Note that the so-obtained P is
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Fig. 11. A schematic of the multiscale window interaction in fluid flows. The intricate
multiscale window interaction, and mean-eddy-turbulence interaction in particular, is
characterized by a quantity namely the canonical transfer Γ�

n (for scale window � and time
step n) which, in terms of multiscale window transform, can be succinctly written in a form
as Eq. (23) or Eq. (21).

a spatio-temporal field, and hence localized events are naturally represented. For a flow, one
can conveniently identify the instability structure, and the corresponding growth rate, simply
by visual inspection.
With this convenience we examined an oceanographic problem. For nearly 70 years, how
the complex circulation in the Monterey Bay, California, is excited has been a continuing
challenge in physical oceanography. Numerous efforts have been invested to investigate its
dynamical origins without much luck. This problem, however, becomes straightforward in
our framework. With an unprecedented dataset collected in 2003, it is found that, though the
circulation seems to be chaotic, the underlying dynamical processes turn out to be tractable.
More specifically, the complexity is mainly due to two mixed instabilities which are located
outside Pt. Sur and Pt. Ano Nuevo, respectively. The resulting mesoscale eddies propagate
northward in the form of coastally trapped waves, orchestrating into a flow complex in
pattern. In this study, we see how winds may instill energy into the ocean, first stored
in the large-scale window, then releasing to fuel the mesoscale eddies through barotropic
and baroclinic instabilities. We have also seen that intense upwelling events may not be
directly driven by winds, nor by topography variation, but may have their origin intrinsically
embedded in the nonlinearity of the system. These dynamical scenarios are distinctly different
from their corresponding classical paradigms.
We have also examined a turbulent wake behind a circular cylinder. It is found the processes
are organized into three distinct scale windows: On the two extremes are the basic flow
and the turbulence; lying in between are the shedding vortices. The vortex shedding is
sustained through two instabilities either on a side of the x-axis, and the mesoscale shedding
further releases energy into the sub-mesoscale window to produce turbulence. The former
two are what we call primary instabilities, while the latter is a secondary instability. The
locations of the instabilities are relatively steady. The primary instabilities are within two
lobes, one at a side of the axis; the secondary instability is in the form of a monopole,
located mainly along the axis, as shown in Fig. 10. This structure implies that the canonical
energy transfer may not be local. In this case, for example, the energy acquired during the
primary instabilities must be first transported from the two side lobes to the middle before
being utilized for turbulence production. This nonlocal transfer may also be reflected in the
discrepancy between perturbation growth and its corresponding canonical transfer. That is to
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say, what one sees about the growth at one location may have its origin elsewhere. From the
mathematical expressions shown in this study this phenomenon is actually a rule rather than
an exception.
The nonlocality of energy transfer raises an issue about causality and accordingly poses a
challenge to turbulence simulation in the parameterization of subgrid processes. Since the
rapid amplification of perturbation need not be instability, schemes based solely on local
perturbation or perturbation growth may not serve the modeling purpose well. We hope
the notion of canonical transfer may come to help in this regard.
On both the primary and secondary instability maps for the turbulent wake, a remarkable
feature is the inverse transfer spots/centers sandwiched between the instability structures.
This phenomenon tells that, even though the flow is turbulent, there exist processes
which introduce orders rather than chaos to the system. This phenomenon has profound
implications; we look at how it may be utilized for flow control, particularly turbulence
control. Turbulence control is an important applied field which has been widely investigated.
Several reviews can be found in Huerre and Monkewitz (1990), Oertel (1990), Williamson
(1996), Pastoor et al. (2008), to name a few. Generally speaking, to control turbulence is
to inhibit perturbation energy from being generated, and accordingly, the traditional control
is designed based on suppression of turbulence growth. This goes back to what we have
observed above: Looking solely at the turbulence growth could be misleading, as energy increase
does not necessarily occur in accordance with transfer. Particularly, in a region with perturbation
growing there could be actually an ongoing inverse transfer or laminarization lying beneath.
If one puts a control in this region to inhibit the perturbation growth, he probably also defeats
the laminarization which is actually helpful to control. To illustrate, consider a two-point
system as shown in Fig. 12. We have points 1 and 2, with eddy energies Keddy

1 and Keddy
2 ,

respectively. Both Keddy
1 and Keddy

2 grow, but their sources of growth are different. The
former is from the in situ large-scale window through instability (Γ1 > 0), while the latter
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Fig. 12. Schematic of the energetics in a two-point system. We use K, Γ, and Q to signify

energy, transfer, and transport, respectively. In this case, both Keddy
1 and Keddy

2 grow, but their
mechanisms are different. The former is due to an instability, while the latter comes from the
positive offset |Q1→2| − |Γ2|, although the transfer Γ2 < 0 is in the inverse direction. To take
advantage of the inverse transfer or laminarization, the control should be placed at point 1
only. (Adapted from Liang and Wang, 2004.)
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is transported from the former. The transfer Γ2 at point 2 is toward the large-scale window,
i.e., a laminarization is taking place there, but since Q1→2 − |Γ2| > 0, Keddy

2 still grows. Of
course, control of the perturbation energy growth at both points 1 and 2 does help to suppress
the onset of turbulence, but it is not optimal in terms of energy saving. Suppression of
Keddy

2 also suppresses the intrinsic trend of laminarization at point 2, and therefore reduces
the control performance. An optimal control strategy should take advantage of this trend,
implying that the control should be applied at point 1 only. Besides, the optimal objective
functional should be chosen to be Γ1, rather than Keddy

1 + Keddy
2 . With this, we have proposed a

strategy to harness vortex shedding behind a circular cylinder, and obtained satisfactory, albeit
preliminary, results (e.g., Liang, 2007). We shall explore more about this in future studies.
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13. Appendix: Detailed balance relation

It has been a common practice to check if the interaction analysis satisfies a Jacobian
identity-like detailed balance relation (e.g., Lesieur 1990; Iima and Toh 1995). We show this
is true with our formulation with the incompressibility assumption. For a scalar field T, and
flow v, the transfer at n on window �, Γ�

n , is given by (21). The basic transfer function of Γ�
n

is, by our definition in section 7,

Tr (n1, �1 | n2, �2; n3, �3) =

1
2

[
−T̂∼�1

n1
∇ ·

(
v̂∼�2

n2
T̂∼�3

n3

)
+

1
2
∇ ·

(
T̂∼�1

n1
v̂∼�2

n2
T̂∼�3

n3

)]
̂

(φ
j2
n2 φ

j3
n3 )

∼�1

n1

+
1
2

[
−T̂∼�1

n1
∇ ·

(
v̂∼�3

n3 T̂∼�2
n2

)
+

1
2
∇ ·

(
T̂∼�1

n1
v̂∼�3

n3 T̂∼�2
n2

)]
̂

(φ
j2
n2 φ

j3
n3 )

∼�1

n1
, (38)

for windows �1, �2, �3, and locations n1, n2, n3 in the time sampling space. When the flow
is incompressible (hence ∇ · v̂∼�

n = 0 for any � and n), it is straightforward check that

Tr (n1, �1 | n2, �2; n3, �3) + Tr (n2, �2 | n3, �3; n1, �1)
+ Tr (n3, �3 | n1, �1; n2, �2) = 0. (39)

This is the detailed balance relation.
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1. Introduction 

Our primary energy consumption is supported in 81% by the combustion of fossil energy 
commodities (IEA, 2010). The demand on energy will grow by about 60% in the near future 
(Shell, 2008). The efficiency of the combustion processes is crucial for the environment and 
for the use of the remaining resources. At the Karlsruhe Institute of Technology the long-
term project Collaborative Research Centre (CRC) 606: “Non-stationary Combustion: 
Transport Phenomena, Chemical Reactions, Technical Systems” was founded to investigate 
the basics of combustion and for the implementations relevant processes coupled to 
combustion (Bockhorn et al., 2003; SFB 606, 2002). 
Modern combustion concepts comprise lean premixed (LP) combustion, which allows for 
the reduction of the pollutant emissions, in particular oxides of nitrogen (NOx) (Lefebvre, 
1995). Lean premixed combustors are, however, prone to combustion instabilities with both 
low and high frequencies. These instabilities result in higher emission, acoustical load of the 
environment and even in structural damage of the system. 
A subproject in CRC 606 was dedicated to investigate low frequency instabilities in 
combustion systems. The main goal of this subproject was to validate an analytical model, 
which was developed to describe the resonant characteristics of combustion systems 
consisting of Helmholtz resonator type components (burner plenum, combustion chamber) 
(Büchner, 2001). The subproject included experimental and numerical investigations as well. 
The goal of the numerical part was to find a reliable tool in order to predict the damping 
ratio of the system. The damping ratio is a very important input of the analytical model. The 
combination of the numerical prediction of the damping ratio and the analytical model 
enables the stability investigation of a system during the design phase. 
In the numerical part Large Eddy Simulation (LES) was used to predict the damping ratio as 
previous investigations with unsteady Reynolds-averaged Navier-Stokes simulation 
(URANS) failed to predict the damping ratio satisfactorily (Rommel, 1995).  The results of 
LES showed a very good agreement with the experimentally measured damping ratio. The 
focus of this chapter is to show results of further numerical investigations, which sheds light 
on a very important source of self-excited combustion instabilities, and to show how can 
provide LES the eigenfrequencies of a system. 
In this chapter firstly a short description to combustion instabilities is given. After it the 
experimental and the numerical investigations of the resonant characteristics of the 
combustion systems will be shown briefly. In these investigations the system was excited 
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with a sinusoidal mass flow rate at the inlet and the system response was captured at the 
outlet. Contrarily in the ensuing numerical investigations there is no excitation at the inlet 
and the system is still pulsating. The source of this pulsation and the consequences will be 
discussed. 
It is important to notice that in these investigations the flow is non-reacting. There is no 
combustion, thus no flame in the combustion chamber. Hence there is no self-excited 
thermo-acoustic oscillation. In the subproject of CRC 606 the investigations of the low-
frequency oscillations in the range of a few Hz up to several 100 Hz were focused on the 
passive parts of the system: the combustion chamber and the burner plenum. The 
determination of the flame resonant characteristics is the object of other works (Büchner, 
2001; Giauque et al., 2005; Lohrmann et al., 2004; Lohrmann & Büchner, 2004, 2005), and also 
of an other subproject within the CRC 606. 
It is also important to clarify here that in these investigations the ignition stability of the 
flame will not be concerned. The combustion instabilities mentioned here are driven by 
thermo-acoustic self-excited oscillations. If there is no pulsation in the combustion chamber 
the flame is stable. Furthermore pulse combustors designed for oscillations are also not dealt 
within this chapter (Reynst, 1961; Zinn, 1996). 
On the other hand, if the flow in a combustion system without flame is investigated the 
mostly used terms to express this are "cold flow", "non-reacting flow" or "isothermal 
condition". The last one neglects any changes in the temperature of the gas beyond the one 
occurred by the heat release of the flame. This is however misleading for peoples who do 
not investigate flames and physically incorrect. The LES results showed temperature 
changes due to the pulsation nearly 100 K in the exhaust gas pipe, which is then in the range 
of 10% of the temperature changes produced by the flame. 

2. Combustion instabilities 

It is an indispensable prerequisite for the successful implementation of advanced 
combustion concepts to avoid periodic combustion instabilities in combustion chambers of 
turbines and in industrial combustors (Büchner et al., 2000; Külsheimer et al., 1999). For the 
elimination of the undesirable oscillations it is important to know the mechanisms of 
feedback of periodic perturbations in the combustion system. If the transfer characteristics of 
the subsystems (in a simple case burner, flame and chamber) furthermore of the coupled 
subsystems are known, the oscillation disposition of the combustion system can be 
evaluated during the design phase for different, realistic operation conditions (desired load 
range, air ratio, fuel type, fuel quality and temperature). 
In order to get a high density of heat release flux i.e. power density and simultaneously low 
NOx emission highly turbulent lean premixed or partially premixed flames are mostly used 
(Lefebvre, 1995). Significant property of these flames is that any disturbances in the 
equivalence ratio through turbulence or in the air/fuel mixture supply produce a very fast 
change in the heat release. Compared to axial jet flames the premixed swirl flames can 
significantly amplify the disturbances (Büchner & Külsheimer, 1997). The combustion 
process is increasingly sensitive to perturbation in the equivalence ratio under lean 
operating conditions. 
Unsteady heat release involves pressure and velocity pulsation in the combustion chamber. 
These can result in thrust/torque oscillation, enhanced heat transfer and thermal stresses to 
combustor walls and other system components, oscillatory mechanical loads that results in 
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low- and high-cycle fatigue of system components (Joos, 2006; Lieuwen & Yang, 2005). The 
oscillation of flow parameters can increase the amplitude of flame movements. This can 
cause blowoff of the flame or, in worst case, a flashback of the flame into the burner plenum. 
There are several mechanisms suspected of leading to combustion instabilities, such as 
periodic inhomogeneities in the mixture fraction, pressure sensitivity of the flame speed and 
the formation of large-scale turbulent structures. 
The coupling of flame and acoustics can produce self-excited thermo-acoustic pulsation. The 
pulsation will be amplified then to the "limit cycle". Thermo-acoustic or thermal acoustic 
oscillations (TAO) were observed at first by Higgins in 1777 during his investigation of a 
"singing flame" (Higgins, 1802). The computation of self-excited thermo-acoustic oscillations 
began with the investigation of the Rijke-tube in (Lehmann, 1937). A short overview about 
the history of simulations of TAO is given in (Hantschk, 2000). It shows that most of the 
investigators wanted to compute oscillations excited by the flame or the system with flames 
excited by an external force at least. Because of the complexity of the problem many 
computations could not predict the limit cycle. 
Lord Rayleigh proposed for the first time a criterion, which, regardless of the source of the 
instabilities, describes the necessary condition for instabilities to occur (Rayleigh, 1878). The 
criterion expresses that a pressure oscillation is amplified if heat is added at a point of 
maximum amplitude or extracted at a point of minimum amplitude. If the opposite occurs, a 
pressure oscillation is damped. The mathematical representation of this criterion was first 
proposed in (Putnam, 1971) as: 

 
0

( ) ( ) 0
T

q t p t dt     (1) 

where q  and p  are the fluctuating parts of the heat release rate and the pressure, 
respectively, t is the time and T is the period of the pulsation. The condition will be satisfied 
for a given frequency if the phase difference between the heat release oscillation and the 
pressure oscillation is less than ±90°. Additionally, the amplitude of the pressure oscillation 
will be amplified if the losses through the damping effects are less than the energy fed into 
the oscillation. More appropriate forms of the Rayleigh criterion and similar criterions can 
be found in (Poinsot & Veynant, 2005). 

2.1 Suppression of combustion-driven oscillations 
In combustion systems of highly complex shape there can be more various modes: low 
frequency bulk mode, transversal, tangential, radial and longitudinal modes. In such a 
combustion system it is almost impossible today to predict all the unstable operating points. 
There are more strategies in practice to suppress the combustion oscillations in the unstable 
operating points. These can be grouped into passive and active control methods. 
Passive or static control methods tune the resonance characteristics of the combustion 
system with additional devices as quarter-wave tube, Helmholtz resonators, sound-
absorbing batting, orifice, ports and baffles (Putnam, 1971). Resonators can be placed in the 
fuel system (Richards & Robey, 2008), in the combustor (Gysling et al., 2000) or in other 
components. Perforates can be used at the premixer inlet (Tran et al., 2009), which is also an 
additional resonator to tune the resonant characteristics of the system. Instabilities can also 
be suppressed by means of injection of aluminium (Heidmann & Povinelli, 1967). Passive or 
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static control strategies methods are more robust and need a minimum of maintenance. 
Their disadvantage is that while an unstable operating point is removed, another may arise. 
An overview about theory and practice of active control methods is given in (Annaswamy & 
Ghoniem, 2002). Active control methods can be subdivided into open-loop (Richards et al., 
2007) and closed-loop design (Kim et al., 2005). Active control is achieved by a sensor in the 
combustion chamber, which measures frequency and phase of the combustion oscillation. 
The measured signal is analyzed and a proper periodic response is determined. The 
response is either an acoustic perturbation (Sato et al., 2007) or a modulation of the fuel 
injection (Guyot et al., 2008). Active control is able to suppress combustion instabilities 
substantially and is already in use for numerous practical applications. However, the 
apparatus is rather expensive and needs continuous maintenance. A failure of the control 
system can lead to a break down of the combustion system. 
Based on the investigations of combustion instabilities (Culick, 1971; Zinn, 1970) there is also 
an approach to keep off unstable regimes during altering operation conditions. Online 
prediction of the onset of the combustion instabilities can help the operator to avoid, that the 
system becoming unstable (Johnson et al., 2000; Lieuwen, 2005; Yi & Gutmark, 2008). This 
technique is very useful if the ambient conditions vary in wide range e.g. for aircraft gas 
turbine. For stationary gas turbines with approximately constant ambient conditions, 
however, this cannot help to design the system for operation conditions, where combustion 
instabilities are not present. 

2.2 System analysis 
In order to analyse the stability of the system control theory can be used. The combustion 
system can be divided in subsystems as burner plenum, flame and combustion chamber 
(Baade, 1974; Büchner, 2001; Lenz, 1980; Priesmeier, 1987). The simplified feedback loop of 
these subsystems is depicted in Fig. 1. A perturbation of the pressure in the combustion 
chamber influences the mass flow rate at the burner outlet. This changes the heat release 
rate of the flame, which results in an alteration of the pressure in the combustion chamber. 
The transfer function of this closed loop and the subsystems can be determined by system 
identification furthermore the stability can be investigated by e.g. the Nyquist criterion 
(Deuker, 1994; Sattelmayer & Polifke, 2003a, 2003b). 
 

 
Fig. 1. Feedback loop of a combustion system with mass flow rate, pressure and heat release 
rate signals 

If the system is built from these elements, a thermoacoustic network can be modelled to 
predict the unstable modes (Bellucci, 2005). Here, however, some information from 
measurement is needed. 
If the phase shift and gain of the components is known the amplification of the pulsation can 
be predicted by means of the Rayleigh criterion. This shows that the accurate knowledge of 
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the phase and gain relationship between pressure and heat release oscillation is a key issue 
to design stable combustion systems. 

2.3 Helmholtz resonator 
Helmholtz resonators are mostly used as passive devices for attenuations of pulsations in 
combustion systems. Furthermore the resonance behaviour of the combustion system can be 
described if it bears analogy to this resonator. 
If a cavity is coupled to the ambient through a port (Fig. 2), the gas in this system can be 
forced into resonance if excited with a certain frequency. Such a geometrical configuration is 
named Helmholtz resonator after Hermann von Helmholtz, who investigated such devices 
in the 1850s. The port is the resonator neck, the cavity is the resonator. 
The mechanical counterpart of the Helmholtz resonator is a mass-spring-damper system 
(Fig. 2). The gas in the neck acts as the mass, the gas in the cavity acts as the spring. The 
identification of the damping is more difficult. There are linear and non-linear effects in the 
flow. Damping is provided by the bulk viscosity during the pressure-volume work, the 
laminar viscosity in the oscillating boundary layer in the resonator neck, the vortex 
shedding at the ends of the resonator neck at the inflow and outflow and the dissipation of 
the kinetic energy through turbulence generation. Which source is dominating in the 
pulsating flow in the combustion system is discussed in (Pritz, 2010). 
 

 
Fig. 2. The Helmholtz resonator and a mass-spring-damper system 

The eigenfrequency of the Helmholtz resonator can be predicted as: 
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where c is the speed of sound and can be calculated from the temperature T, the specific 
heat ratio γ and the specific gas constant R of an ideal gas as: 

 c RT . (3) 

Furthermore in Eq. (2) d is the diameter, L is the length and A is the cross section area of the 
neck, V is the volume of the resonator. The second term in the parenthesis in the 
denominator is a length correction term, which can be different for Helmholtz resonators 
with different geometries. 
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In order to describe the resonance behaviour of combustion systems, they can be treated as 
single or coupled Helmholtz resonators. In combustion systems the combustion chamber, 
the burner plenum or other components with larger volume act as resonators. The exhaust 
gas pipe and the components coupling the resonator volumes together are resonator necks. 
In industrial combustors the identification of the components of the Helmholtz resonators is 
easier, in gas turbines more difficult. It is very important which components are assumed to 
be coupled and which are decoupled. Wrong assumptions can lead to predicting modes 
incorrectly or even it is impossible to predict certain modes. 

2.4 The reduced physical model 
The suppression of the combustion oscillations is not a universal solution. The main goal is 
to design the combustion system not to be prone to combustion instabilities. 
For the prediction of the stability of combustion systems regarding the development and 
maintaining of self-sustained combustion instabilities the knowledge of the periodic-non-
stationary mixing and reacting behaviour of the applied flame type and a quantitative 
description of the resonance characteristics of the gas volumes in the combustion chamber is 
conclusively needed. In order to describe the periodic combustion instabilities many attempt 
have been made to assign the dominant frequency of oscillation to the geometry of the 
combustion chamber. For the description of the geometry-dependent resonance frequency 
of the system the equations were derived under the assumption of undamped oscillation 
(e.g. ¼ wave resonator, Helmholtz resonator). These models predict the resonance frequency 
quite accurate since the shift due to the moderate damping in the system is negligible. Such 
a simplified model, however, is not applicable for a quantitative prediction of the stability 
limit of a real combustion system. On one hand it predicts infinite amplification at the 
resonance frequency. On the other hand the frequency-dependent phase shift between input 
and output is described by a step function, hence it cannot be used for the application of a 
phase criterion (Rayleigh or Nyquist criterion), which is used to predict the occurrence of 
pressure and heat release oscillations in real combustion systems. 
A reduced physical model was developed in (Büchner, 2001), which is able to describe the 
resonance characteristics of combustion chambers, if their geometry satisfies the geometrical 
conditions of a Helmholtz resonator (Arnold & Büchner, 2003; Büchner, 2001; Lohrmann et 
al., 2001; Petsch et al., 2005; Russ & Büchner, 2007). The reduced physical model was derived 
similar to the resonance behaviour of a mass-spring-damper system, which provides a 
continuous transfer function of the amplification and the phase shift. First the model was 
developed to describe a single resonator, later it was extended to a coupled system of two 
resonators. For this reduced physical model scaling laws were developed based on 
experimental data. The influence of the amplitude of pulsation, the mean mass flow rate, the 
temperature of the gas and the geometry were investigated. 
In this model the damping in the system is expressed by an integral value. The damping 
factor cannot be determined by analytical solution. The accurate determination of the 
damping based on the 2nd Rayleigh-Stokes problem is not possible because of the 
complexity and non-linearity of the flow motion in the chamber and in the exhaust gas pipe. 
It was, however, possible to derive a scaling law for the damping in function of the gas 
temperature. A scaling law for the dependency of the damping on the length of the exhaust 
gas pipe could be also derived but its prediction is less accurate (Büchner, 2001). 
There is a possibility to determine the integral value of the damping ratio by one 
measurement e.g. at the resonance frequency predicted by the undamped Helmholtz 
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resonator model. This is, however, feasible only if the combustion system already exists. In 
order to determine the value of the damping factor in the design stage numerical simulation 
should be carried out. 

3. Resonant characteristics of combustion systems 

As mentioned in the Introduction the investigations focused on the passive parts of the 
system: burner plenum and combustion chamber (including exhaust gas pipe). Here two 
configurations will be discussed. A single combustion chamber as a single resonator, and a 
coupled system of burner plenum and combustion chamber as coupled resonators. 

3.1 Experimental setup 
Former experimental investigations showed that the combustion chamber has specific 
impact on the stability of the overall system. As first approximation, if the components 
upstream to the combustion chamber are decoupled by the pressure loss of the coupling 
element (e.g. burner), the only vibratory component is the combustion chamber, and the 
system can be treated as a single resonator. 
In Fig. 3 the sketch of the experimental setup is shown. In the experiments the transfer 
function of the combustion chamber was calculated from the input signal measured with the 
hot-wire probe 1 at the inlet of the chamber and from the output signal measured with the 
hot-wire probe 2 at the exit cross section of the exhaust gas pipe (Arnold & Büchner, 2003). 
An alternative output signal was the pressure measured with a microphone probe at the 
middle of the side wall in the combustion chamber (Büchner, 2001). 
The model of the single Helmholtz resonator describes combustion systems sufficiently 
precise only in a first approximation, since real combustion systems in general have more 
vibratory gas volumes in addition to the combustion chamber (mixing device, air/fuel 
supply, burner plenum and exhaust gas system). The linking of these vibratory 
subsystems results in a significantly more complex vibration behaviour of the overall 
system compared to the single combustion chamber. To get closer to real combustion 
systems the model of the single Helmholtz resonator must be extended to describe more 
resonators coupled to each other. 
For modelling a coupled system the burner plenum was added upstream to the combustion 
chamber. The reduced physical model was extended for the coupled system of burner and 
combustion chamber (Russ & Büchner, 2007). In order to prove the prediction of the model 
for the coupled system different geometric parameters (burner volume, resonator geometry) 
and operating parameters (mean mass flow rate) were varied in the experimental part. In 
each case the flow was non-reacting. The transfer function was calculated from the input 
signal (inlet of the burner plenum) and output signal (exit cross section of the exhaust gas 
pipe) similar to the case of the single resonator. The sketch of the experimental setup and the 
analogy of a mass-spring-damper system are shown in Fig. 4. 
In order to excite the system at different discrete frequencies a pulsator unit was used. 
This unit could produce a sinusoidal component of the mass flow rate with prescribed 
amplitude and frequency (Büchner, 2001). For example in the case of the coupled 
Helmholtz-resonators in Fig. 4 the mean volume flow rate is partially pulsated by the 
pulsator unit. The pulsating flow passes through the burner plenum (bp), reaches the 
combustion chamber (cc) through the resonator neck and leaves the system at the end of 
the exhaust gas pipe (egp). 
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Fig. 3. The sketch of the test rig and the analogy of the mass-spring-damper system and the 
combustion chamber as Helmholtz resonator 

 

 
Fig. 4. Coupled Helmholtz-resonators and oscillating masses connected with springs and 
damping elements 
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3.2 Numerical setup 
In order to compute the resonance characteristics of the system a series of LESs at discrete 
forcing frequencies had to be completed.  
In the case of the single resonator these were taken for a basic configuration corresponding 
to the experiments, for variation of the geometry of the resonator neck and for variation of 
the fluid temperature. The compressible flow in the chamber of the basic geometry was 
simulated for five different frequencies in the vicinity of the resonance frequency. A detailed 
description of the investigated cases is omitted here as it is not in the focus of this chapter 
and it can be found in (Magagnato et al., 2005). 
In the case of the coupled resonators one configuration was investigated. Ten LESs were 
calculated at different excitation frequencies, because the domain of interest is a broader 
frequency range than in the case of the single resonator. A detailed description of this 
investigation can be found in (Pritz et al., 2009). 

3.2.1 Numerical method 
The main goal of the numerical investigation was to predict the damping coefficient of the 
system which is an important input for the reduced physical model. In order to provide an 
insight into the flow mechanics inside the system LES were carried out. LES is an approach 
to simulate turbulent flows based on resolving the unsteady large-scale motion of the fluid 
while the impact of the small-scale turbulence on the large scales is accounted for by a sub-
grid scale model. By the prediction of flows in complex geometries, where large, anisotropic 
vortex structures dominate, the statistical turbulence models often fail. The LES approach is 
for such flows more reliable and more attractive as it allows more insight into the vortex 
dynamics. In recent years the rapid increase of computer power has made LES accessible to 
a broader scientific community. This is reflected in an abundance of papers on the method 
and its applications. 
The solution of the fully compressible Navier-Stokes equations was essential to capture the 
physical response of the pulsation amplification, which is mainly the compressibility of the 
gas volume in the chamber. Viscous effects play a crucial role in the oscillating boundary 
layer in the neck of the Helmholtz resonator and, hereby, in the damping of the pulsation. 
The pulsation and the high shear in the resonator neck produce highly anisotropic swirled 
flow. Therefore it is improbable that a URANS can render such flow reliably. 
The LESs of this system were carried out with the in-house developed parallel flow solver 
called SPARC (Structured PArallel Research Code) (Magagnato, 1998). The code is based on 
three-dimensional block structured finite volume method and parallelized with the message 
passing interface (MPI). 
In the case of the combustors the fully compressible Navier-Stokes equations are solved. The 
spatial discretization is a second-order accurate central difference formulation. The temporal 
integration is carried out with a second-order accurate implicit dual-time stepping scheme 
(Zou & Xu, 2000). For the inner iterations the 5-stage Runge-Kutta scheme was used. The 
time step was Δt=2·10-5 s and Δt=2·10-6 s for the single resonator and for the coupled 
resonators, respectively. This was a compromise in order to resolve the turbulent scales and 
compute the pulsation cycles within the permitted time. The Smagorinsky-Lilly model was 
chosen as subgrid-scale model (Lilly, 1967). Later investigations with MILES approach and 
dynamic Smagorinsky model show no significant difference in the results. This proofs that 
the mesh was sufficiently fine in the regions which are responsible for the damping of the 
pulsation, thus the modelling of the SGS structures has a minor influence there. 
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The Full Multigrid (FMG) method is used with four grid levels to achieve faster the 
statistically stationary state. The FMG method implies grid sequencing and a convergence 
acceleration technique. The number of cells on a grid level is eight time less then on the next 
finer grid level. 

3.2.2 Computational domain and boundary conditions 
If the flow in the combustion chamber and the resonator neck has to be simulated (grey area 
in Fig. 5) attention should be paid to some difficulties by the definition of the boundary 
conditions. 
 

 
Fig. 5. Sketch of the computational domain and boundary conditions of the single resonator 

Even though the geometry of the chamber is axisymmetric no symmetry or periodic 
condition could be used because the vortices in the flow are three-dimensional and they are 
mostly on the symmetry axis of the chamber. In the present simulations an O-type grid is 
used to avoid singularity at the symmetry axis. 
At the inflow boundary the fluctuation components should be prescribed for a LES. 
Furthermore, the boundary must not produce unphysical reflections, if the pressure 
fluctuations, which move in the chamber back and forth, go through the inlet. A 
conventional boundary condition can reflect up to 60% of the incident waves back into the 
flow area. One can avoid these reflections only by the use of a non-reflecting boundary 
condition. If the inlet would be set at the boundary of the grey area, this problem can be 
solved hardly. In the experimental investigation a nozzle was used at the inflow into the 
chamber. The pressure drop of the nozzle ensures that the gas volume in the test rig 
components upstream of the combustion chamber does not affect the pulsation response of 
the resonator. It was decided to use this nozzle in the computation also. Although the 
additional volume of the nozzle increases the number of computing cells, a non-reflecting 
boundary condition is no more necessary. In addition, the fluctuation components at the 
inlet can be neglected, since the nozzle decreases strongly the turbulence level downstream. 

Ambient 
pressure 

Pulsating 
mass flow 
rate inlet 

Wall 

degp 
dcc 

lcc 

28·degp 

20·degp 

legp 



 
Stability Investigation of Combustion Chambers with LES 

 

193 

At the inlet a partially pulsated mass flow rate was prescribed. The rate of pulsation was set 
to 25%. 
The definition of the outflow conditions at the end of the exhaust pipe is particularly 
difficult. The resolved eddies can produce a local backflow in this cross section occasionally. 
In particular, by excitation frequencies in the proximity of the resonant frequency there is a 
temporal backflow through the whole cross section, which has been observed by the 
experimental investigations as well. 
 

 
Fig. 6. Third finest mesh extracted to the symmetry plane (distortions were caused by the 
extraction in Tecplot) 

The change of the direction of the flow changes the mathematical character of the set of 
equations. For compressible subsonic flow four boundary values must be given at the inlet 
and one must be extrapolated from the flow area. At the outlet one must give one boundary 
value and extrapolate four others. Since these values are a function of the space and time, 
their determination from the measurement is impossible. Further the reflection of the waves 
must be avoided also at the outlet. For these reasons the outflow boundary was set not at the 
end of the exhaust gas pipe, but in the far field. In order to damp the waves in direction to 
the outlet boundary mesh stretching was used. 
At the solid surfaces the no-slip boundary condition and an adiabatic wall were imposed. 
For the first grid point y+<1 was obtained, the turbulence effect of the wall was modelled 
with the van Driest type damping function. The geometry of the computational domain and 
the boundary conditions are shown in Fig. 5. The entire computational domain contains 
about 4.3·106 grid points in 111 blocks. A coarsened mesh is shown in Fig. 6. 
The definition of the computational domain and the boundary conditions in the case of the 
coupled resonators were very similar. The geometry of the configuration chosen for the 
numerical investigation of the coupled resonators is illustrated in Fig. 7. The observation 
windows (for operations with flame) and the inserted baffle plates increased the complexity 
of the geometry and hence the generation of the mesh significantly. There were baffle plates 
placed in the burner plenum and in the combustion chamber to avoid the jet of the nozzle 
and of the resonator neck to flow directly through the system, furthermore to achieve a 
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homogeneous distribution of the velocity in the cross-section of the measuring point at the 
end of the exhaust gas pipe. 
 

  
Fig. 7. Geometry of the test rig (left) and the 3D block-structure of the mesh (right) 

The outlet boundary had to be modified somewhat compared to the case of the single 
resonator. The size of this outflow region is 50·degp in axial direction and 40·degp in radial 
direction. At the outlet surface at x=5 m the static pressure outlet condition is used and the 
surface is inclined based on the observation explained next (Fig. 8). In order to obtain a 
statistically steady solution before applying the excitation at the inlet a long time calculation 
on the multigrid level 4 (coarsest mesh) and 3 was carried out. The entropy waves generated 
by the transient of the initialization must be advected through the burner plenum and the 
combustion chamber and finally out of the system. This needed a relative long time as the 
convection velocity behind the baffle plates is quite small. After the acoustic waves 
generated also by the transient of the initialization were decayed, it was detected, that 
acoustic waves of a discrete frequency were amplified to extreme high amplitudes. The 
wave length coincided width the length of the computational domain. After the outlet 
surface was slanted these standing waves decayed. 
For the distribution of the control volumes a very important aspect was to apply the 
findings of the investigations of the single resonator. Thus much more computational cells 
were arranged in the regions of the resonator neck and of the exhaust gas pipe, respectively, 
and in this case around the baffle plates. The final version of the mesh consists of approx. 
27·106 control volumes distributed among 612 blocks. 
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Fig. 8. The computational domain with block structure in the symmetry plane of the coupled 
resonators 

3.3 Comparison of the results 
The aim of the investigations of the single resonator was to identify the main damping 
mechanisms and estimate their effect on the stability of the system. In order to get an 
impression about the flow in the resonators iso-surfaces of the Q-criterion are plotted in Fig. 
9. A detailed investigation of the pulsating flow is shown in (Pritz, 2010). 
In this section the resonance characteristics of the combustion chamber obtained from 
experiments and computations are compared by means of the amplitude and phase transfer 
functions. The amplitude ratio of the mass flow rates is defined as: 
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The amplitude ratios and phase shift were identified in the numerical simulations if the 
cycle limit was reached. 
In Fig. 10 experimental data sets with the analytical model and the results of the 
computation are exhibited. In one case of the experiments the exhaust pipe was 
manufactured from a turned steel tube, in the other case the tube was polished. The LES 
data compare more favourable with the experimental data of polished tube, because the 
wall in the simulation was aerodynamically smooth, just like the polished resonator neck. 
The computation predicts the damping factor quite well; the deviation is about 7%. If the 
results of the measurement of the turned steel tube are compared with the simulation, the 
deviation is about 40%.  
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Fig. 9. Flow pattern in the resonators: iso-surfaces of the Q-criterion at 5·104 s-2 in the single 
resonator (top) and at 104 s-2 in the coupled resonators (bottom) 
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Fig. 10. Amplitude response (left) and phase transfer function (right) of the single resonator 
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The results of the coupled resonators on different grid levels are plotted in Fig. 11. The 
difference in the resonance characteristics on the finest and second finest grid is negligible. It 
was tested only at the lower resonant frequency, at the highest amplitude ratio, because the 
calculation on the finest mesh was very time consuming. The higher is the amplitude ratio 
the higher are the demands on the mesh. This result shows that the flow phenomena, which 
influence the damping, are adequate resolved on the second finest mesh. It is important to 
take into consideration that the mesh was optimized on the results of the investigation of the 
single resonator. 
 

 

 
Fig. 11. Amplitude response (top) and phase shift function (bottom) of the coupled 
resonators 

The plotted results in Fig. 11 show generally a very good prediction of the resonance 
frequencies and of the phase shift, respectively. In the gain, however, there is a discrepancy 
of approx. 20% in the prediction of the amplitude ratio at the highest peak, at fex=28 Hz. It 
was mentioned at the experimental setup that baffle plates were implemented in the burner 
plenum and in the combustion chamber. On these plates the flow is strongly deflected, there 
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is a significant shearing (see Fig. 9). Unfortunately, in the experiments the plates were 
perforated. This was necessary to achieve the best velocity distribution at the outlet for the 
measurement with hot wire. In the simulations the wall condition was used for the plates. 
The resolution of the holes would yield a tremendous number of grid points. A boundary 
condition which can model this effect was not available. By the time the geometry data of 
the configuration were received, it was not possible to replace the plates any more. Probably 
this difference plays the major role in the underprediction of the amplitude ratio. 

4. Investigation without external excitation 

In the previous section the resonance characteristics of the system was measured 
experimentally and predicted numerically. In order to reduce the investigation on a few 
discrete excitation frequencies the eigenfrequency of the system must be approximated 
firstly. If the geometry is simple Eq. (2) can be used. In order to determine the amplification 
and the phase shift of the system well defined excitation had to be prescribed. Therefore a 
partially pulsated mass flow rate with a prescribed frequency near to the eigenfrequency 
was used in the numerical simulation at the inlet. In this section the simulations were 
carried out with a constant mass flow rate at the inlet. 
The experiences of the investigations showed that the transient waves generated at the start 
of the computation should be decayed before the excitation with given amplitude and 
frequency was started. This was necessary to get the real system response at the outlet. A 
calculation was initialized with homogeneous distribution of each variable. This produces 
quite strong transient waves. The mass flow rate signal at the outlet of the exhaust gas pipe 
was used to monitoring the decaying of these waves. As soon as an almost constant mass 
flow rate was reached the computation could be continued on the second coarsest grid level. 
The extrapolation of the solution from the coarser on the next finer grid level produces also 
transient waves because of the sudden change of the shear stress at the walls. These waves 
are much smaller than the waves generated at the initialization but they are still 
considerable on the second coarsest grid level. The mass flow rate signal at the outlet of the 
exhaust gas pipe showed the decaying of these waves but later a certain amount of 
pulsation was observed and it decayed not at all. The amplitude of this pulsation was not 
negligible. As the mass flow rate was computed through integration over the whole cross 
section of the exhaust gas pipe the turbulent fluctuations were mostly filtered out. 
At the description of the computational domain it was mentioned that the outlet boundary 
in the case of the coupled resonators had to be inclined to eliminate standing waves. These 
standing waves produced a dominant pulsation with large amplitude in the mass flow rate 
signal therefore the identification of the frequency was relative simple. In the case of the 
single resonator the computation was shorter so the standing waves were not amplified to a 
noticeable value. In the mass flow rate signal the frequency of the dominating wave was 
approximately at the eigenfrequency of the combustion chamber. In order to analyze this 
signal better the computation without excitation at the inlet was continued to get enough 
sample for a Fourier transformation. 
The frequency spectrum plotted in Fig. 12 was computed from the mass flow rate signal on 
the second finest and finest mesh. For this computation the time step was increased to 
Δt=10-4 s, to a relative high value to get a better resolution of the spectra in the low 
frequency range. The samples were taken in each time step, thus the sampling frequency 
was 10 kHz furthermore the sampling length was 32768. The peak at 39 Hz agrees very good 
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with the response function of the combustion chamber in Fig. 10. Recent investigations 
showed that the resonance frequency can be captured already on the coarsest grid level and 
the signal of the solution on the second coarsest grid can already predict the resonance 
frequency quite accurately. 
 

 
Fig. 12. Frequency spectrum of the outlet mass flow rate of the single resonator 

It was shown in (Büchner, 2001) that the mass flow rate signal at the outlet and the pressure 
signal in the combustion chamber can be used as output signal equivalently i.e. the 
pulsation of the mass flow rate indicates a pulsation of the pressure in the chamber. The 
Fourier transform of the pressure signal measured at the middle of the side wall of the 
chamber gives the same result. 
The mass flow rate at the inlet for this calculation was kept on a constant value. There was 
no external excitation in this computation and no turbulence at the inlet was described. The 
only possible forcing of the pulsation could arise from the turbulent motions inside the 
combustion chamber. The inflow into the chamber is a jet with strong shear layer which 
generates a broad band spectrum of turbulent fluctuations (Fig. 9). The combustion chamber 
then amplifies the pressure fluctuations generated by the turbulence at its eigenfrequency. 
In order to investigate the effect of periodic flow instabilities further calculations with 
different mass flow rate at the inlet were carried out. It was changed to 200% and to 80% of 
the original value, respectively. The spectra of the mass flow rate of these calculations gave 
the same distribution in the low frequency range except the amplitude of the pulsation was 
changing proportional to the mean mass flow rate. 
Based on these results the mass flow rate signal in the case of the coupled resonators was 
also investigated. In Fig. 13 the frequency spectrum of the mass flow rate signal on the 
second finest mesh is exhibited. The peaks at 27 Hz and 54 Hz correspond with the 
eigenfrequencies of the coupled system, which can be read e.g. from Fig. 11 at the phase 
shift angle 90° and 270°, respectively. 
There are some possible mechanisms listed in the literature, which could trigger self-excited 
instabilities in combustion systems, but they are not sufficiently understood (Büchner, 2001;  
Joos, 2006; Poinsot & Veynant, 2005; Reynst, 1961). An important achievement of these 
simulations is that the pressure in the combustion chamber can pulsate already without any 
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external excitation e.g. compressor or other incoming disturbances from ambient or even 
periodic flow instabilities depending on the design of the burner. Thus the flame is also 
pulsating. The amplitude of this pulsation will be amplified to the limit cycle if the time lag 
of the flame changed so that the pressure fluctuation and the heat release fluctuation meet 
the Rayleigh criterion. 
 

 
Fig. 13. Frequency spectrum of the outlet mass flow rate of the coupled resonators 

The results of the earlier investigations show that the pulsation and the high shear in the 
resonator neck produce highly anisotropic swirled flow. Therefore it is unlikely that a 
URANS simulation can render such flow reliably. Furthermore if the turbulence is modelled 
statistically, it cannot excite the flow in the combustion chamber. The use of LES for the 
investigation of combustion instabilities is essential. 
For the analytical model the eigenfrequency of the system is an important input parameter. If 
the geometry is rather simple the undamped Helmholtz resonator model can be used. Further 
important achievement of the present computations is that the eigenfrequency of the system 
with geometry of high complexity can be predicted without an additional modal analysis. The 
calculation with constant mass flow rate is a preparation for the investigation with excitation at 
the inlet. As the amplitude of the excitation is not well defined in the former case only the 
latter calculation can provide the damping ratio for the analytical model. 

5. Conclusion 

The lean premixed combustion allows for reducing the production of thermal NOx, 
therefore it is largely used in stationary gas turbines and for other industrial combustion. 
Lean premixed combustors are, however, prone to combustion instabilities with both low 
and high frequencies. For the prediction of the stability of technical combustion systems the 
knowledge of the periodic-non-stationary mixing and reacting behaviour of the applied 
flame type and a quantitative description of the resonance characteristics of the gas volumes 
in the combustion chamber is conclusively needed. 
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In this chapter the numerical investigation of the non-reacting flow in a Helmholtz 
resonator-type model combustion chamber and in a coupled system of burner and 
combustion chamber is presented briefly. The work was a part of series of investigations to 
determine the stability limits of combustion systems. The resonance characteristics of the 
combustion systems were calculated using Large Eddy Simulation. The results are in good 
agreement with the experimental data and a reduced physical model, which was developed 
to describe the resonant behaviour of a damped Helmholtz resonator-type combustion 
chamber (Büchner, 2001). 
The solution of the fully compressible Navier-Stokes equations was essential to capture the 
physical response of the pulsation amplification, which is mainly the compressibility of the 
gas volume in the chamber. Viscous effects play a crucial role in the oscillating boundary 
layer in the neck of the Helmholtz resonator and, hereby, in the damping of the pulsation. 
The pulsation and the high shear in the resonator neck produce highly anisotropic turbulent 
flow. Therefore it is improbable that an URANS simulation can render such flow reliably. 
The investigation of the case without external excitation showed that the frequency 
spectrum of the mass flow rate signal at the outlet of the exhaust gas pipe provides a peak at 
the eigenfrequency of the combustion chamber. The only possible forcing of this pulsation 
was the turbulent fluctuations generated by the jet in the combustion chamber. The 
broadband excitation of the turbulent flow can be amplified by the flame and can produce a 
broadband background heat release rate oscillation as detected also in (Yi & Gutmark, 2008). 
If the eigenfrequency of the combustion chamber or other vibratory component is in the 
range of the frequencies of the energetic turbulent eddies a dominant pulsation can occur. 
The amplitude of this pulsation will be amplified to the limit cycle if the time lag of the 
flame changed so that the pressure fluctuation and the heat release fluctuation meet the 
Rayleigh criterion. If the turbulence is modelled statistically (URANS), it cannot excite the 
flow in the combustion chamber. The use of LES for the investigation of combustion 
instabilities is essential. 
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1. Introduction 

Shallow coastal areas are extremely dynamic regions where the fluid motions associated 
with both surface waves and currents interact with the bottom sediments. The prediction of 
the wave effects on sediment transport in shallow water conditions and in intermediate 
depth is still frequently restricted to monochromatic and unidirectional wave models. 
However, in real shallow water conditions, the nonlinear process of sediment transport 
responds in a rather different way to the idealized regular wave case. Therefore, in these 
regions, both the wave non-linearity and the wave-current interaction become important 
factors to be considered. Forecasts of morphological changes are invariably dependent on 
the correct prediction of the sand transport rate under the action of waves and currents, 
which requires accurate estimation of the friction at bed level, considering all resulting 
complex interactions effects in its entirety. A major consequence of the fluid dynamics 
resulting from the combined wave and current motions is the response of the movable 
seabed, which is significantly altered from that expected for a linear superposition of a pure 
wave motion with a pure current. In recent years, various attempts have been made to 
improve the state of knowledge of the flow in the bottom boundary layer regarding the 
wave non-linearity and complex wave-current effects on the sand-transport rate, using 
theoretical models. The erosion and sediment transport estimation around usual structures 
in the fluvial and coastal environment, like bridge piers, groynes and breakwaters, are of a 
major concern for designing these structures and for considering preventive measures. After 
a brief discussion on turbulence, the following sections present mathematical and numerical 
approaches of different complexity. Starting by the fundamental equations of the Fluid 
Mechanics, a complex unresolved formulation without further assumptions is obtained. 
Afterwards, considering some physical hypotheses, practical models of different complexity 
are shown, followed by simple parametric approaches and applications. 

2. Turbulence 

Turbulence has been a long standing challenge for human mind. Five centuries after the first 
studies of Leonardo da Vinci, understanding turbulence continues to attract a great deal of 
attention. This may be due to its fascinating complexity and ubiquitous presence in a variety 
of flows in nature and engineering. The first turbulence references by Leonardo da Vinci are 
based on visual observations. In 1883, Osborne Reynolds introduced the concept of 
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averages, which became the base of great theoretical-experimental studies. In 20th century, 
Taylor by the thirties presented the first statistical theory for isotropic turbulence, 
Kolmogorov by the year 1941 formulated theoretical developments for local turbulence, 
Batchelor by the year 1953 distinguish himself for theoretical and experimental studies 
about free turbulence of waves and jets. Then, much more other studies were presented, 
mainly about wall turbulence, boundary layer and air models. Several resumes can be 
found in Monin and Yaglom (1971), Tennekes and Lumley (1972), Launder and Spalding 
(1972), Hinze (1975), Schiestel (1993), Nezu and Nakagawa (1993), Rodi (1980, 1993), 
Mohammadi and Pironneau (1994), Lumley (1996), Chen et al. (1996) and Lesieur (1997), 
among others. 
The detailed accurate computation of large scale turbulent flows has become increasingly 
important and considerable effort has been devoted to the development of models for the 
simulation of complex turbulent flows in several applications over the last decades. The 
description of turbulence flows is based on the assumption that instantaneous flow variables 
satisfy the Navier-Stokes equations, which contain a full description of turbulence, given 
that they describe the motion of every Newtonian incompressible fluid based on 
conservation principles without further assumptions. Analysing the applicability of 
continuum concepts to the description of turbulence, Moulden et al. (1978) conclude that if 
the Newtonian constitutive relation is valid, then it is plausible to accept that turbulent 
flows instantaneously satisfy the same dynamical equations as laminar flows. For laminar 
flows, analytical or numerical solutions can be directly compared to experimental results in 
some cases. Moser (2006) declared that despite the increasing range of turbulence spatial 
scales as the Reynolds number increases, in turbulence, the continuum assumption and the 
Navier-Stokes equations are an increasingly good approximation.  
The aforementioned assumption seems to be well supported as DNS “Direct Numerical 
Simulation”, in which all scales of the motion are simulated using solely the Navier-Stokes 
equations. It is the most natural approach to the numerical simulation of turbulent flows 
but, since by Kolmogorov’s theory, small scales exist down to O. (Re-3/4), in order to capture 
them on a mesh, a meshsize 3 4Reh   and consequently (in 3D) 9 4ReN   mesh points are 
necessary. Thus, it only could be applied for simple and low-Reynolds number turbulent 
flows (Kaneda & Ishihara, 2006; McComb, 2011). Even if DNS were feasible for hydraulic 
practical interest, it is not possible to define, with the precision required by the smallest 
scales of the motion, proper initial and boundary conditions. This fact is of significant 
importance due to non-linear character of the advection terms, which results in the 
production and maintenance of instabilities which in turn excite small scales in the motion. 
The presence of non-linear terms also precludes the existence, in the most general case, of 
unique solutions for a given set of initial and boundary conditions. Thus, as a large 
Reynolds number turbulent flow is inherently unstable, even small boundary perturbations 
may excite the already existing small scales, with possible corresponding perturbation 
amplifications. The lack of solution uniqueness and the infeasibility of defining precise 
initial and boundary conditions combine themselves in a way that the resultant flow 
appears random in character. Indeed, the uncontrollable nature of the boundary conditions 
(in terms of wall roughness size and distribution, wall vibration, etc.) forces the analyst to 
characterize them as “random forcings” which, consequently, produce random responses 
(Aldama, 1990). The Navier-Stokes equations can then exhibit great sensitivity to initial 
and boundary conditions leading to unpredictable chaotic behaviour. Although the 
fundamental laws behind the Navier-Stokes equations are purely deterministic, these 
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equations, similar to other simpler deterministic equations, can often behave chaotically 
under certain conditions. Due to the randomness in turbulent flows, it is hopeless to track 
instantaneous behaviour. Instead, the goal is to measure this behaviour in the temporal or 
spatial mean.  
Most researchers in the turbulence field accept that instantaneous flow variables satisfy the 
Navier-Stokes equations as an axiom and use it as the basis for the development of 
models for numerical simulation. Assuming that details of motion at the level small and 
intermediate scales, which tend to exhibit high randomness levels and peculiar 
characteristics such as isotropy, are not required in most applications of interest in 
engineering and geophysics, the establishment of two approaches, which have the 
potential for being applied to problems of engineering interest, can be defined. The first 
approach is based on the use of filters for the flow variables of interest, Large Eddy 
Simulation (LES). The second one relies on the use of statistical averages on the same 
variables, Reynolds-averaged Navier-Stokes equations. Although the former is formally 
superior to the latter, its use implies paying a computational price which is too high for 
applications of practical interest. LES requires less computational effort than direct 
numerical simulation (DNS), but more effort than those methods that solve the Reynolds-
averaged Navier-Stokes equations (RANS). These equations, derived by Osborne 
Reynolds in 1985, describe the dynamics of the “mean flow” in terms of a time average, 
and later defined as average in the probability space “ensemble average”. The Reynolds 
stresses produced by advection terms, which are second order correlations in statistical 
terms, are determined by exact transport equations for the Reynolds stresses derived from 
the Navier-Stokes equations. However, third-order correlations appear in such 
expressions and four-order correlations will appear in the exact transport equations for 
the third-order correlations. This is called the problem of closure of the statistical 
treatment. The approach of neglecting correlations of higher order has proved to be 
unsuccessful because the turbulent flows are not completely random. Experimental 
investigations have made it possible to identify, through the use of conditional sampling 
techniques, “coherent structures” such as shear layers imbedded in turbulent flows, and 
that the degree of coherence is scale dependent. In the solution of complicated sets of 
nonlinear partial differential equations, the interaction between physics and numerical 
approach is very strong, and the use of second approach in question makes it possible to 
have a better understanding of that interaction and, as a consequence, to control it. Four 
main approaches have been followed to find ways to close the Reynolds equations by 
introducing hypotheses based on physical insight and observational evidence: 1- 
transport; 2- mean velocity field; 3- turbulent field, and 4- invariant models. The resulting 
model equations contain a number of empirical constants which, in general, increase with 
their complexity. These models have the base on important concepts and hypotheses as 
the eddy viscosity concept by Boussinesq, in 1877, Prandtl’s mixing length concept, in 
1925, Kolmogorov’s isotropic dissipation assumption, in 1941, and Rotta’s energy 
redistribution hypothesis, in 1951 (Monin & Yaglom, 1971; Rodi, 1984). 

3. Governing equations 

The fundamental equations of the Fluid Mechanics applied to a three-dimensional flow of 
an incompressible and viscous fluid, with sediment in suspension, are written: 
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where u is the instantaneous velocity of the flow; C is the volumetric concentration of the 
sediment; p is the pressure; l  is the kinematic viscosity; gi is the acceleration due to gravity; 
  is the density; 0  is the density of the fluid; s  is the density of the sediment; ws is the 
sediment settling velocity, and m  is the molecular diffusivity. 

3.1 Turbulence closure model with sediment in suspension 
Following the classical Osborne Reynolds procedure, and assuming that the fluid is in a 
randomly unsteady turbulent state and applying time averaging to the basic equations of 
motion, the fundamental equations of incompressible turbulent motion are obtained. These 
are known as the Reynolds equations, and involve both mean and fluctuating quantities – 
the turbulent inertia tensor components. We consider only incompressible turbulent flow 
with constant transport properties but with possible significant fluctuations in velocity, 
pressure, and concentration, i.e.: 

 i   '
i iu u u ; i   '

i ip p p ; '
i i iC C C    

Substituting these functions into the basic equations (1), and taking the time average of each 
entire equation, we obtain (2) (Rodi, 1984): 

 

 
 

 

  

 

 0

0 0

0

a)  0

1
b)  

c)  

d)  1

i

i

i

' 'i i i  j l i j i
j i j j

' '
 i s m i

i i i

s

u
x

p ρ ρu u u
u ν u u g

t x ρ x x x ρ

C C C
u w γ u ρ

t x x x

ρ ρ C C ρ




 
  

  
  



  
      

   
 

      
  

 (2) 

where - ' '
 i ju u  are the tensor components of the Reynolds stresses, and - ''

 iu ρ  are the tensor 
components of density-velocity correlations. Thus the mean momentum equation and the 
equation for the concentration are complicated by new terms involving the turbulent inertia 
tensor ' '

 i ju u  and density fluctuations ''
 iu ρ . The new terms are never negligible in any 

turbulent flow with sediment in suspension, and can be defined only through knowledge of 
the detailed turbulent structure, which is, in its turn, unavailable. These turbulent quantities 
are related not only to the fluid physical properties but also to local flow conditions. As no 
physical laws are available, most attempts have been made to resolve this dilemma. Many 
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attempts have been made to add turbulence conservation relations to the time-averaged 
equations above. 

3.2 Boussinesq hypothesis (first order turbulence closure model) 

According to the Boussinesq hypothesis, the turbulent shear stresses ' '
 i ju u  are modelled in 

terms of the gradients of the mean flow velocities through (3), 

 
   2

 ;   ; 1 2 3
3

j' ' ' 'i i j t ij i t
j i i

u ρu
u u ν δ K  u  ρ γ    i, j = , ,

x x x

 
  

 
      

  
  (3) 

where  2 2 2
1 2 32 2' ' ' ' '

i jK u  u u u u     is the turbulent kinetic energy, per mass unit; tν  is 

the turbulent viscosity, and tγ  is the turbulent diffusivity. In contrast to the molecular 
viscosity l , the turbulent viscosity t  is not a fluid property, but depends strongly on the 
state of the turbulence and may vary considerably over the flow field. A turbulence model 
thus usually has the task of determining the distribution of t  over the flow field, by 
relating the turbulence correlations to the averaged dependent variables. As a first order 
turbulence closure, the turbulent viscosity tν  is obtained through the mixing-length theory of 
Prandtl (1925), who, by analogy with kinetic theory, proposed that each turbulent 
fluctuation could be related to a length lm scale and a velocity gradient, 
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2 2i
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u u v
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z z z
                

 (4) 

For the lm scale different relations have been proposed. We suggest 1ml kz z z  , where 
0.4k   is the von Kármán constant and z  is the boundary layer thickness. 

3.3 Second order turbulence closure model 
A derivation of the turbulent shear stresses, where i j , involves subtracting the above 
time-averaged equation (2-b) from its instantaneous value (1-b), for both the ix  and jx  
directions. The ith result is then multiplied by '

ju  and added to the jth result multiplied by 
'
iu . This relation is then time-averaged to yield the following Reynolds stress equation ' '

 i ju u : 
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In equation (5), the three terms of different nature  ' ' '
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  are to be either neglected or related to other variables. Let us 

consider these terms in some detail. 
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- The third-order velocity correlations  ' ' '
  i j k

k

u u u
x



  express the process as the 

Reynolds stresses are conservatively transmitted from one region of the flow to another; 

they are usually obtained through     
' '

t i j
k k

C q L u u
x x
 
 

 
 
 

 (Lewellen, 1977), where q  is 

the root-mean-square value of the total velocity fluctuation, L is the macroscale of the 
eddies, and tC  is a constant; 

- The pressure-velocity correlations   
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, which redistribute to the mean 

flow the turbulent energy produced, are commonly approximated by 
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, where i, jδ  is the Kronecker symbol and pC  is a constant; 

- The dissipation terms  2
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 , which represent the destruction 

of the mean flow energy by viscous effects, are jointly modelled through 

 3 2
21

v i, jC δ q
L

 , where vC  is a constant. Inserting these approximations in (5), the 

following equation (6) for the ' '
i ju  u  correlations is obtained: 
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where 2  2 ' '
 i jq = K u u , and the constants have the following values: 0.30tC  , 1.0pC   and 

1 12vC  . By analogy to equation (6), a density-velocity correlations tensor ' '
 iu ρ  is 

obtained: 
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with the quadratic term 2'ρ  calculated through (8), 
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An equation for the turbulent length scale (or macroscale of the eddies), L , is written: 
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  (9) 

where 0.75qC  , 0.1125rC  , 0.35lC  , 0.075sC   and 0.80zC  . As can be easily seen, an 

equation for the turbulent length scale L is, like all other approximations, of the form: 
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Modelling the production and dissipation terms by 2 ' ' i
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the diffusion terms by 
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, as suggested by Lewellen (1977), and 

adding the buoyancy term, the approximation (9) above is newly obtained.  
In summary, equations (2), along with equations (6), (7), (8) and (9) for turbulence closure, 
constitute a complete 3D turbulent boundary layer model with sediment in suspension. 

3.4 Simplified turbulent boundary layer models 
Proceeding with a non-dimensional analysis of the mean flow equations, without sediment 
in suspension, and considering: 
1. A sinusoidal wave  ˆ

w wU , T, L . 
2. The following boundary layer approximations: 

- Small boundary layer thickness    z 2 ,   being the wave length; 
- Nikuradse equivalent bottom rugosity much inferior to the boundary layer 

thickness ( zNk  ). 

3. Small wave amplitude and Stokes hypothesis, which assumes that: 
- The maximum wave velocity amplitude is much inferior to the celerity 

( ˆ
wU gh ). 

4. Local equilibrium turbulence, along with the turbulent kinetic energy is equivalent to 
the viscous dissipation. Assuming local equilibrium there is no time evolution or spatial 
diffusion of the correlations, and the Reynolds stress equation ' '

 i ju u  can be reduced. 

In summary, assuming these hypotheses we can: i) consider a horizontal flow (u, v, w = 0); ii) 
neglect the convective and horizontal diffusion transport, and iii) simplify the turbulent 
transport equations, cancelling the remaining time variation terms and the diffusion terms 
of the velocity correlations. 
Considering the above hypotheses in the pure hydrodynamic Reynolds equations (2-b), 
without stratification, the following approximations (11) result: 
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On the other hand, under the same assumptions, the Reynolds stress equation ' '
 i ju u  (6) can be 

written explicitly: 
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Adding the last three equations we get (13) for 2q : 
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Taking now into account local equilibrium turbulence (Sheng, 1984), which can be assumed 
when the scale L/q is much smaller than the time scale of the mean flow and when the 
turbulent quantities have a small variation on the macroscale of the eddies L. In addition, 
neglecting both variations in time and diffusive transport terms, from equations system (12) 
the following equations (14) are obtained: 
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This system of equations allows us to obtain (15): 
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Comparing the last two equations of (15) with 
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clear that: 
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In addition, it can be seen from the first three equations of (15) that: 
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3.5 1DV turbulent boundary layer models 
Considering now a horizontal flow along x-direction (u, v = 0, w = 0) with sediment in 
suspension, so with the buoyancy terms, and local equilibrium turbulence, the system (12) is 
written in the following form (18): 
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Solving this equation system for ' 'u w  and ' 'w   we obtain (19): 
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. As shown before and from (3) 
 

 ' '  t
u

u w
z




   and 
 ' '

 t
ρ

w ρ γ
z




  ; 

comparing with the expressions (19) above we can write (20) and (21): 
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3.5.1 Two-equation K-L 1DV boundary layer model 
Taking into account the assumptions stated before, a complete set of governing equations 
(22) for the two-equation K L  model is written (Tran-Thu & Temperville, 1994): 
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 (22) 

where u and v are horizontal components of flow velocity in the boundary layer; C is the 
volumetric concentration; sw  is the sediment settling velocity; K is the turbulent kinetic 

energy, and L is the length scale of the large vortices. 
The turbulent viscosity t  and the turbulent diffusivity t  are given by equations (20) and 

(21), respectively. The hydrodynamic equations and the concentration equation are coupled 
through the equation (23) for the density: 

  0 0  sρ ρ ρ ρ C    (23) 

where 0ρ  and sρ  are the densities of the fluid and sediment, respectively. 

3.5.2 One-equation K-L 1DV boundary layer model 
With ( , , )L f k z K , a complete one-equation K L  turbulence closure model is simply 

written: 
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where (20), (21) and (23) apply. 
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A number of empirical equations for the length scale L could be found in the literature; some 
examples are (with k = 0.4): 
 4  lL k c z , where 0.08lc  . 

  1L k z z z  , z  being the boundary layer thickness. 

    1 2 1 2  ,  ,
o

z
o o o oz

L k K K dz z K K K z t    . 

   1 wz A
wL k z e



  , where 26A  , wz  is the distance to the wall and   w w T lz z u   , 

Tu  being the friction velocity. 

The influence of a stable stratification on L can be taken into account through (25), 
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 is the Richardson number and oL  is the length scale L 

value without stratification. 

3.5.3 Zero-equation boundary layer model 

Defining the mixing length as  1ml k z z z  , where 0.4k   and z  is the boundary layer 

thickness, equations (26) for the u and v variables in the boundary layer are obtained: 
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Stable stratification effects on ml  could be taken into account through the relation 
    0.5

1 10
2

m mo il l R   , where 0ml  is the mixing length ml  value without stratification, and 

iR  is the Richardson number, as defined above. We now assume in (26): 
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where U and V are the velocity components outside of the boundary layer. Defining the 
deficit velocity components  ,d du v  as (28), 

            , ,   ;  , ,d du u U v v Vz t z t t z t z t t     (28) 

and substituting in (26) the following equations (29) are obtained, 
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These equations are non-linear and no analytical solutions are available, so they have to be 
solved numerically, as will be shown later. 
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3.6 Boundary conditions for 1DV turbulent boundary layer models 
3.6.1 One- and two-equation boundary layer models of the K-L type 
 At the lower limit of the boundary layer, 0z z  

-    0 0 0u z v z  ; 0K z   ;    0 0L z z , with 0.67   (empirical constant). 

- At the hydraulic rough regime, the level 0z  is taken to be 30Nk , with 2.5 Nk d  

the Nikuradse equivalent roughness of a bed of sand with diameter d. In the 
transitory regime, Nk  and 0z  are calculated following Sleath (1984) (Tran Thu and 

Temperville, 1994). 
- For the reference concentration at the bottom, bC , the following relations may be 

used: 0.63bC C  , or  C C ψ , where     1bψ τ t ρ s gd  . 
 At the upper limit of the boundary layer, z z  

Assuming that the instantaneous velocity   U t


 is given at a level z z  outside the 

boundary layer, the boundary conditions are: 
-      u z U t 


,   U t


 may contain a component of the mean current cU  as well as 
oscillatory components of the wave; 

-   0K z    (pure wave),  or 0
z

K z


    (combined wave and current); 

-   0L z    (pure wave),  or    L z z  (combined wave and current); 

- Depending on the problem, the condition 0
z

L z


    may be also adequate; 

-   0C z    (pure wave),  or 0
b

q t z
w C C t     (combined wave and current). 

Initial values for u, v, K and L are the solution for the initial field current velocities (Uc, 
Vc). 

 Estimation of the boundary layer thickness, z  
Considering a pure current ( ˆ 0wU  ) in a channel with a water column h, the boundary 

layer thickness is z h  . 

Assuming now a pure wave (Uc = Vc = 0) propagating in a channel, the boundary layer 
thickness reaches its minimum value and can be approximated by 

 0.81ˆ0.246 N Nz k a k   (Huynh-Thanh, 1990), where  the orbital amplitude is given by 
  ˆˆ 2weq cha U T   for an equivalent sinusoidal wave with ˆ

weqU , and during a 
characteristic signal period chT  (Antunes do Carmo et al., 1996). The relation proposed 
for Nz k  corresponds to the thickness beyond which K is zero. 

A general rough estimation for z  can be obtained by (30): 
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   (30) 

3.6.2 Zero-equation model 
The following conditions (31) are imposed at the lower limit 0z z  and at the upper limit 
z z  of the boundary layer: 

         ; 0  ;    ; 0d o d d o du z ,t U   u z ,t v z ,t V   v z ,t        (31) 
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3.7 2DV turbulent boundary layer model 
Over movable beds, the interaction of flow and sediment transport creates a variety of bed 
forms such as ripples, dunes, antidunes or other irregular shapes and obstacles. Their 
presence, in general, causes flow separation and recirculation, which can alter the overall 
flow resistance and, consequently, can affect sediment transport within the water mass and 
bottom erosion. For dunes, in particular, the flow is characterized by an attached flow on 
their windward side, separation at their crest and formation of a recirculation eddy in their 
leeside (Fourniotis et al., 2006). A detailed description of the flow over a dune is then of 
fundamental interest because the pressure and friction (shear-stress) distributions on the 
bed determine the total resistance on the bottom and the rate of sediment transport. Over 
bed forms a 1DV version of the turbulent boundary layer is no able to describe the main 
processes that occur above and close to the bed surface. Consequently, a 2DV turbulent 
boundary layer model is developed herein.  
Considering a two-dimensional mean non-stratified flow in the vertical plane  , 0,u v w , 
only non-zero y-derivatives are present. The physical problem is outlined in figure 1 below, 
under the action of a wave. Knowing that the wavelength is always greater than the length 
of the ripples, i.e. w rL L , we can restrict the domain of calculation, instead of investigate 
all the domain over of the whole wavelength. 
 

 
Fig. 1. Scheme of the physical system (Huynh-Thanh & Temperville, 1991) 

The basic equations of the model are derived from the previous ones (2). In order to simplify 
the numerical resolution of the equations we make use of the stream function (  ) and 
vorticity ( ) variables, instead of the velocities u and v, and a transformation of the physical 
domain into a rectangular one. Considering that only two-independent spatial derivatives 
are involved in the flow, in the xz-plane, i.e., a flow with only velocity components  , ,u x z t  
and   , ,w x z t , the equations of motion are restricted to the continuity equation and the two 
components of the Reynolds equations. Under these assumptions, from (2) the two 
components (32) and (33) of the pure hydrodynamic momentum equation are written: 

        21
' ' '  

pu u u
u w u u w

t x z ρ x x z
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        21
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 (33) 

Substituting in (32) and (33) the approximations (34), 
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the governing equations (35) and (36) result: 

 
       

 
1

2 t t
pu u u u u w

u w
t x z ρ x x x z z x

    
   

                          
 (35) 

 
       1

2t t
pw w w u w w

u w
t x z ρ z x z x z z

    
   

                          
 (36) 

The unknown pressure gradient due to the bed forms can now be eliminated from equations 
(35) and (36) by cross-differentiation, i.e., taking the curl of the two-dimensional vector 
momentum equations. The result reads: 

 

      

     
2 2 2

 
2 2    2t t t

u w u w u w
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 (37) 

By definition, the following relations (38) account: 

 u
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; w
x
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  u w
z x

  
 
 

  (38) 

Inserting the stream function (  ) and vorticity ( ) variables in equation (37) the following 
result (39) for the vorticity is obtained (Huynh-Thanh, 1990; Tran-Thu, 1995): 
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where 
 
 

,

,x z x z z x
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2 2
2

2 2x z
 

  
 

. 

An equation for the stream function is obtained through the definitions (38), substituting u 
and v in  : 

 2      (40) 

which is known as the Poisson equation. The turbulent viscosity t  is obtained assuming 
local equilibrium turbulence. Once more in the vertical plane  , 0,u v w , the following 
equations system (41) can be written: 
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  (41) 

The third equation of this system allows us to obtain 2 2' 4 2v q K  , with 1.0pC   and 

1 12vC  .  

Assuming identical production along both x- and z-directions, from the second and fourth 

equations we find that 2 2' 'u w . This hypothesis is supported by laboratory experiments 
over a bottom with ripples conducted by Sato et al. (1984), among others.  Therefore, as 

2 2 2 22 ' ' 'q K u v w    , the above results show that 2 2 2' ' 3 8 3 4u w q K   . On the other 

hand, from the first equation of the system (41) we find that: 
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8 8
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 (42) 

Therefore, 

 
3

2
8t KL   (43) 

The equation for the turbulent kinetic energy, K, is obtained through the earlier already 
presented in two-dimensions in the vertical plane: 
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  (44) 

Inserting the stream function ( ) in equation (44), we find (45): 
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The length scale L is directly imposed by the analytical solution (46): 

 0.67 1L z z z    (46) 

In order to describe the space-time distribution of the sediments concentration over a 
bottom with ripples, an equation for C is included, considering in it the advection and 
diffusion terms in both x-horizontal and z-vertical directions: 

    s t t
C C C

uC w w C
t x z x x z z

                            
 (47) 

In order to simplify the numerical resolution of the equations, as well as the description of 
the boundary conditions at the ripples surface, the physical domain in coordinates (x, z) is 
transformed into a rectangular one (the computation domain) utilizing orthogonal 
curvilinear coordinates (X, Z) (Figure 2), using the following transformations (48) (Sato et al., 
1984; Huynh-Thanh, 1990; Tran-Thu, 1995; Silva, 2001): 
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2 2
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2 2
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X x a n Z n X
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Z z a n Z n X
L L

  

  





   
      

   
   

      
   




  (48) 

where N, na  and n  are coefficients to be determined in such a way that the curve Z = 0 
represents the real ripple. 
 

 

Fig. 2. Physical and computational domains. Transformation of coordinates    , ,x z X Z  

The Jacobian of the transformation is defined by (49): 

 
  2 2,
( , )
X Z X Z X Z X X
x z x z z x x z

                         
J  (49) 

which is calculated from the inverse transformation of the Jacobian  1
0 0 J J J . After 

carried out the transformation of coordinates    , ,x z X Z , the above equations (39), (40), 
(43), (45) and (47) are written and solved iteratively as will be shown later (see Huynh-
Thanh, 1990, Tran-Thu, 1995, and Silva, 2001, for details): 
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where an algebraic equation for L is used, 0.67 1L Z Z z  . For K we get (53), 
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where 
2 22 2 2

2 24 t x z z x

                          

P  represents the production of K, and for C: 

 
  ψ ψ

  0s t s t
C x C x C

w C w C
t X Z Z X Z X X Z

                                         
J J  (54) 

3.8 Boundary conditions for a 2DV turbulent boundary layer model 
 At the lower limit of the boundary layer, 0 30Nz z k   

- conditions for the stream current: 0X Z       ; 0  . 
- condition for the turbulent kinetic energy: 0K Z   . 
- condition for the vorticity:  2  0 1 1 02 J Z Z    , where 1  is the stream function 

value at height Z1.. Value for 0  can be also obtained from the one obtained at the 
time precedent through 2 2 2

 XZJ J Z        . 
 At the upper limit of the boundary layer, z z  

- condition for the stream current:  Z U t   , where    sinc wU t U U t  , or 
   ,z t Q t   if the flow is known at the level z z . 

- condition for the turbulent kinetic energy. K = 0 (pure current), or 0K Z    
(combined wave and current). 

- condition for the vorticity: 0   (it is assumed non-rotational flow outside of the 
boundary layer). 

At the lateral boundaries (X = 0 and X = L), a spatially periodic condition for  ,   and K is 
assumed. 

3.9 Other simplified two-equation turbulence closure models 

A relation for the turbulent viscosity, equivalent to (16), can be written as 2
tν  C K ε , 

where   is the turbulent dissipation rate defined by 
''
ji

l
k k

uu
ν

x x


 

 . Comparing this 

definition of the eddy viscosity t  with (16), a relation between L  and   is found 
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3 2
Kε C K L . Any other combination of the form m nK L  can be utilized, for example the 

specific dissipation rate  1 2
 ωLω C K L C K  . This suggests the use of different 

variables, other than the macroscale of the eddies L, with all approximations of the form 
(10). One of these turbulence closure schemes, possibly the best known, is the two-equation 
K   model; its governing equations are written: 
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  (56) 

where, 0.08 0.09KC C   , 1.0LC  , 1.0K  , 1.30  , 1 1.44C    and 2 1.92C   . 
The turbulent viscosity is calculated by 2

tν  C K ε , where 0.09C  . 
The Wilcox (1993) model is a two-equation K   turbulence closure scheme. The K and   
equations are determined through (57) and (58): 
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where 1 0.50KC  , 2 0.09KC  , 1 0.50C   , 2 5 9C    and 3 3 40C   . The turbulent 
viscosity is calculated by tν  K  . 

4. Numerical approaches 

4.1 1DV boundary layer models 
4.1.1 One- and two-equation models of the K-L type 
Equations system (22) can be easily solved applying an implicit finite-difference approach in 
the raw unknowns (u, v, K, L, C, t , and t ) of five differential equations, both in space and 
time, and two algebraic ones.  
Final solution for the vertical profiles of the horizontal components of the velocity (u, v), 
turbulent kinetic energy (K), macroscale of the eddies (L), concentration (C) and turbulent 
viscosity ( t ), is obtained iteratively during the time-period T of the signal introduced at the 
upper limit of the boundary layer. A flowchart representing the numerical solution 
implemented is presented in figure 3.  

4.1.2 Zero-equation model 
The model equations (29) are to be solved in this section. Considering the du , we note that 
the non-linear term should be linearized in time using Taylor series. With 2

t m du l u z   , the 
following form of the du -equation show how the solution could be obtained: 
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Considering the case 0du  , a discretized form of this equation reads: 

 1 1 1
 1   1  ;  2 1n n n
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where the coefficients jA , jB , jC  and jD  are: 
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with n n n
  1 2   1d j d j d ju u u     and n n n

  1 2  1  d j d j d ju u u    . 
 

 
Fig. 3. Flowchart for the 1DV two-equation K L  boundary layer model 

Applications of 1DV boundary layer models are presented later, in this chapter. 
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4.2 2DV boundary layer model 
Equations (50) to (54) are easily solved applying an implicit finite-difference approach 
centred in space and forward in time. The alternating direction implicit (ADI) method is 
used to solve the equations for   and K. The Poisson equation for   is solved by the bloc-
cyclic reduction method (Roache, 1976), which allows a huge saving in calculation time 
compared to the Gauss-Seidel iteration method (Huynh-Thanh & Temperville, 1991). Final 
solution is obtained iteratively during the time-period T of the signal introduced at the 
upper limit of the boundary layer. A flowchart representing the numerical solution 
implemented is presented in figure 4. 
 

 
Fig. 4. Flowchart for the 2DV one-equation K L  boundary layer model 

Comparisons of laboratory experiments with numerical results of the 2DV boundary layer 
model are presented later, in section 6. 

5. Parametric formulations 

Following we show how different parametric approaches are derived, and tested with 
experimental data, using the two-equation K L  boundary layer model (22). Using this 
model, Huynh Thanh (1990) proposed formula (59) below for the wave friction coefficient, 

 w rf , in the rough turbulent flow case: 
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1

 ( ) 1 2exp
n

w r
N

A
f c c

K

     
   

 (59) 

where A is the wave excursion amplitude, and with the empirical coefficients 1c , 2c  and 1n  
determined by Huynh Thanh, and presented in table 1 (formula HTfwr). Using the same 
boundary layer model (22), considering the best overall fit with a large number of the model 
results, in the interval 1 36.4 10 3.4 10NA k    , Antunes do Carmo et al. (2003) proposed 
formula (59) with the empirical coefficients determined in that study, listed in table 1 as 
formula CTfwr. 
 

Coeff. 
Formula 

c1 c2 n1 

HTfwr 
 

0.00278 4.6500 -0.2200 

CTfwr 
 

0.00140 4.5840 -0.1340 

Table 1. Fitting coefficients 1c , 2c  and 1n , for model of Huynh Thanh (1990) (= HTfwr) and 
proposed  by Antunes do Carmo et al. (2003) (= CTfwr) 

In the case of a current alone, Huynh Thanh found that the friction coefficient  c rf  coincides 
with the value obtained by the theoretical formula (60): 

 
 

2

( )
 0
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1c r

k
f

Ln h z

 
  

  
 (60) 

5.1 Sinusoidal wave alone 
Considering rough turbulent flows, for values of the wave friction coefficient,  w rf , Antunes 
do Carmo et al. (2003) proposed formula (59) with CTfwr coefficients (table 1); Tanaka & Thu 
(1994) suggested formula (61), Swart (1974) formula (62) and Soulsby et al. (1994) formula (63): 

   0.10
 ( ) 0 exp 7.53 8.07 w rf A z     (61) 

   0.19
 ( ) 0.00251 exp 5.21 w r Nf A K   (62) 

   0.52
( ) 01.39 w rf A z    (63) 

A comparison between formulae (59), with HTfwr and CTfwr coefficients, (61), (62) and (63) is 
shown in Antunes do Carmo et al. (2003). The same figure also shows experimental 
measurements of Sleath (1987), Kamphuis (1975), Jensen et al. (1989), Sumer et al. (1987) and 
Jonsson & Carlsen (1976).  
According to Sleath (1991), bottom shear stress may be split into two components: 

 ˆ ˆ ˆwp w p     (64) 
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The shear stress in the fluid, ˆw , is taken into account by the model, but the value of ˆp , due 
to the mean pressure gradient acting on the bed roughness, is not. Using Sleath’s 
experiments, it can be seen that a global friction coefficient may be split into the following 
two components: 

 wp w pf f f   (65) 

where wf  represents the friction coefficient obtained by the K-L model, and pf  represents 
the pressure gradient contribution. Assuming 502.5 NK d , Sleath (1991) presented the 
formula (66): 

   10.48 p Nf A K   (66) 

The pressure gradient was not taken into account in experiments conducted by Sleath, 
Sumer, Jensen and Jonsson. Therefore, results of their experimental data are compared with 
model (59) considering CTfwr coefficients. Excluding a small part of the Sleath’s experiments, 
all other cases show a close agreement model (Antunes do Carmo et al., 2003). Discrepancies 
are explained as a consequence of some of Sleath’s experiments being in the smooth-laminar 
transition regime. The pressure gradient is taken into account in Kamphuis’ experiments, so 
this data should be compared with values for the following expression (67): 

 
0.134 1

0.0014 exp 4.584 0.48 wp w p
N N

A A
f f f

K K

            
     

 (67) 

For values of 100NA K  , the pf  term is negligible and expression (59) with CTfwr 
coefficients (table 1) is in close agreement with results (Antunes dio Carmo et al., 2003). 

5.2 Time-dependent shear stress 
For the purpose of calculating time-dependent shear stress  t  in the case of an irregular 
wave whose instantaneous velocity is given by  U t , Soulsby et al. (1994) propose 
calculating the value of the friction coefficient wf  for the equivalent sinusoidal wave with 
orbital velocity amplitude equal to  2 rmsU  and period Tp. It can therefore be deduced 
(Antunes do Carmo et al., 2003): 
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A


  (68) 

where rmsU  = root-mean-square of orbital velocities. For a sinusoidal wave, this formulation 
correctly represents, in parametric form, the bottom shear stress obtained using K L  
model (22), but does not take into account the phase shift between  t  and  tU . For an 
asymmetric wave, or an irregular wave, more important differences appear between this 
parametric formulation and the results calculated directly by the K L  model. 
To illustrate these phenomena, we consider the instantaneous velocity records presented in 
figure 5 for three cases (Antunes do Carmo et al., 2003): a) a sinusoidal wave, with orbital 
velocity amplitude 0.225 m/s and period 3.6 sec; b) a cnoidal wave, with a total velocity 
amplitude 1.107 m/s and period 9 sec, and c) an irregular wave obtained by the non-linear 
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propagation of a sinusoidal wave, making use of a numerical Boussinesq-type model 
(Antunes do Carmo et al., 1993), with a 3.0 sec period in a channel 0.30 m depth. 
The values of the friction coefficient for a sinusoidal wave are shown in figure 6. Close 
agreement is evident between results 1 and 2. The instantaneous bottom shear stresses  t  
have been calculated using model (59) with CTfwr coefficients. In figure 7, results given by 
the K L  model (22) (result 2) are compared both with those of model (59) (result 1) and 
with those obtained by a constant friction coefficient without the phase shift (result 3). 
Computed shear stresses for the sinusoidal wave case are presented in figure 7-a). Results of 
the model (59) with CTfwr coefficients (result 1) are in close agreement with those of the 
K L  model (22).  
 
 

 
 

Fig. 5. Instantaneous velocity records: a – Sinusoidal wave (orbital velocity amplitude = 
0.225 m/s, period = 3.6 sec); b – Cnoidal wave (total velocity amplitude = 1.107 m/s, period 
= 9.0 sec); c – Irregular wave (resulting from the non-linear propagation of a sinusoidal 
wave with a period = 3.0 sec in a channel 0.30 m depth) (Antunes do Carmo et al., 2003) 
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Fig. 6. Comparisons between the parameterized friction coefficient and the K L  model 
result for a sinusoidal wave. Model (59) with CTfwr coefficients (result 1: ----; result 3: 
…..…) and that obtained by K L  model (result 2: _____) (Antunes do Carmo et al., 2003) 
 

 
Fig. 7. Comparisons between the parameterized shear stress and the K L  model result: a) 
Sinusoidal wave; b) Cnoidal wave; c) Irregular wave. Model (59) with CTfwr coefficients 
(result 1: ----; result 3: .…....) and that obtained with K L  model (result 2: _____) 
(Antunes do Carmo et al., 2003) 

A phase error between result 3 and result 2 ( K L  model) is evident. In the cnoidal wave 
case, the bottom shear stress calculated by the numerical boundary layer model is 
represented in figure 7-b) by the continuous line. As can be seen, for this case (figure 7-b), 
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result 1 is closer to result 2 than it is to result 3, for both phase and negative values. 
However, asymmetries are not reproduced and a discrepancy can be seen for the maximum 
value. Several observations can be made concerning these results (Antunes do Carmo et al., 
2003): i) The representative curve  t  does not present the symmetry of velocities  U t . 
The negative values of  t  are more important after the main positive peak than before it. 
It may be assumed that a “turbulence memory” created for this main peak influences what 
happens afterwards; ii) If the maximum velocity value is considered to be 1U  and the 
minimum velocity value 2U , it follows that: 
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2 2

1 1

0.08
U
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 (69) 

Figure 7-b) shows that the relation 2 1 0.24    is greater than the value calculated by (69). 
Therefore, as in the case of a sinusoidal wave, the friction coefficient does not remain 
constant when velocity changes, assuming increasing values with decreasing velocity. 
Antunes do Carmo et al. (2003) propose calculating a time-dependent friction coefficient by 
replacing the maximum velocity with the instantaneous velocity  U t  , which takes into 
account the phase shift. The coefficient  f t  will accordingly be calculated using expression 
(59), with CTfwr coefficients (table 1), where A is given by (70): 

 
 

max

2

2

 rms pU  T U t θ
A

π U


  (70) 

and  t  is defined by (71): 

         
2

f t
τ t U t θ U t θ    (71) 

  represents the phase lag between  U t  and the bottom shear stress  τ t  at the upper 

limit of the boundary layer. Computed shear stresses for the more complex velocity case 
(irregular wave obtained by the non-linear propagation of an input sinusoidal wave) is 
presented in figure 7-c). A comparison of results 1 and 3 with result 2 shows that result 1 is 
still closer to that of the K L  model (22) than to result 3. Also, a slight discrepancy can be 
seen for the maximum value. Despite the “turbulence memory effects”, the model (59) with 
CTfwr coefficients fits closely with the boundary layer model results for the three cases 
analysed. Comparisons were made, however, assuming that results given by the K L  
model correctly represent the real conditions. Moreover, some discrepancies occur, 
especially for the maximum values. 

6. Applications 
6.1 K-L 1DV boundary layer model 
Following closely Antunes do Carmo et al. (1996), an application of the K L  turbulence 
model is presented, which corresponds to a sinusoidal mass oscillation where the velocity at 
the top of the bottom boundary layer is a pure sinusoidal wave with amplitude 170u   
cm/s and period 7.2 sec. The following values were considered: 2.6sw   cm/s, 50 0.021d   
cm, 2

0 0.175 10z    cm, 502 0.042az d   cm and 16.2z   cm. Figure 8-a) to d) show the 
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time series of sediment concentration computed at different levels above az  (z = 0.10, 1.62, 
2.08 and 4.54  cm). In figure 8-e) the vertical profiles of sediment concentration with phase   
shift of 60º are plotted (full lines), as well as the mean values over a wave period (dash 
lines). In each case the numerical solutions are compared to experimental data obtained by 
Ribberink & Al-Salem (Tran-Thu, 1995). Finally, in figure 8-f) the eddy diffusivity vertical 
profile averaged over a wave period is plotted.  
 

 
Fig. 8. Sinusoidal mass oscillation (Antunes do Carmo et al., 1996) 
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The analyses of results show that:  
i. the vertical distribution of sediment agrees well with experimental data; 
ii. the pick concentration in the time series occurs with larger and larger phase the further 

away the level is located from the bed; 
iii. at the upper levels, a time phase shift between the computed values of concentration 

and the experimental ones is observed; 
iv. in the vicinity of the bottom (figure 8-a)) the time series of concentration shows the 

intermittence phenomena; 
v. the maximum values of sediment concentration agree well with data at all levels. 

6.2 2DV boundary layer model 
The flow in the bottom boundary layer established over a rippled bed was investigated 
through experiments and numerical calculations with a 2DV model. Experiments were 
conducted in an oscillatory flow tunnel illustrated in figure 9. This device was built from an 
existing wave flume at the Department of Civil Engineering of the University of Coimbra, 
Portugal. The wave tunnel has a rectangular cross section with 0.30 m width and 0.20 m 
high. The total length of the tunnel is 7.5 m. 
 

7.5  m

0.6  m

0.2  m

A B

 
Fig. 9. Wave tunnel 

At the left end (A) the vertical motion of a wave paddle produces an oscillatory flow within 
the tunnel. Five artificial symmetrical ripples have been placed on the tunnel’s bed: each of 
the ripples has a length (Lr) of 7 cm and height (Hr) equal to 1.2 cm. The ripples were made 
in aluminium with the following profile (72): 

 2
2

4 4
0 2r r

r r
rr

H H
z x x H  ;   x L /

LL
      (72) 

Sediment with a median grain diameter of 0.27 mm was glue to the surface of the ripples in 
order to simulate the skin roughness. Velocities were measured with an acoustic Doppler 
system (ADV) under sinusoidal oscillations at the wave paddle, over one ripple crest and 
one trough. Table 2 presents the experimental conditions considered in one of the tests 
made, being z1 the height above the crest where the measurements were done. With the 
configuration of the ADV used, the measurements could only be done for heights above 4 
cm from the bed. Figure 10 represents the mean values of the measured values of u and w at 
different levels during the wave cycle: u and w represent, respectively, the horizontal 
velocity in wave’s tunnel direction and the vertical velocity. 
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Serie Nr Crest/Trough T (s) Zi (cm) 
S1 1 Cr 3.60 3.9 
- 2 Cr 3.60 4.0 
- 3 Cr 3.60 4.8 
- 4 Cr 3.60 5.7 
- 5 Cr 3.60 6.8 
- 6 Cr 3.60 7.9 
- 7 Cr 3.60 8.9 
- 8 T 3.60 2.6 
- 9 T 3.60 2.8 
- 10 T 3.60 3.1 
- 11 T 3.60 3.6 
- 12 T 3.60 4.1 
- 13 T 3.60 4.6 
- 14 T 3.60 5.1 
- 15 T 3.60 6.1 
- 16 T 3.60 8.1 
- 17 T 3.60 9.9 

Table 2. Experimental conditions 
 

 
Fig. 10. Measured time series of U and W for different levels above the crest (i, ii) - (z1 (a) = 
8.9 cm, z1 (b) = 7.9 cm, z1 (c) = 4.0 cm, z1 (d) = 3.9 cm) and above the trough (iii, iv) – (z1 (a) = 
9.9 cm, z1 (b) = 8.1 cm, z1 (c) = 2.8 cm, z1 (d) = 2.6 cm) (Silva, 2001) 



 
Turbulent Boundary Layer Models: Theory and Applications 

 

233 

These values were divided by the amplitude of the horizontal velocity outside the boundary 
layer, Uw, and were obtained by averaging equi-phase data over approximately 20 wave 
periods. The analysis of figure 10 shows that: (1) The oscillatory flow in the wave tunnel 
does not correspond to a sinusoidal oscillation as we can observe from the velocities 
measured at the highest levels (a), and (2) At the lower levels (c, d) the measured values of w 
show oscillations with a time scale inferior to the ones observed in the highest levels: this 
suggest that the flow at those levels is perturbed by the lee vortex developed during the 
wave cycle and that are ejected from the bottom after flow reversal (0º and 180º). 
A numerical simulation of the flow in the bottom boundary layer was done with the 2DV 
model (50) to (54). In figure 11 the numerical results are compared with the experimental 
data. The results are only plotted for the lower level of measurements. 
 

 
 

Fig. 11. Numerical results vs experimental data (Silva, 2001) 

It is seen that there is a good agreement between the computed and measured horizontal 
velocity. The computed vertical velocity shows small oscillations after flow reversal, 
between 0º-90º and 210º-300º. The shape of these oscillations is similar to the observed one, 
although there is a phase shift between them. The amplitude of these oscillations is also 
lower than the amplitude of the measured values of w: this means that the model dissipates 
the kinetic energy of the ejected vortex at a rate that is superior to what it is observed. This 
feature has also been noted in other comparisons. To analyse with more detail the flow in 
the bottom boundary layer, namely the vortex paths during the wave cycle, we have plotted 
in figure 12 the vorticity field at different wave phases. It is seen that the lowest level of 
measurements over the ripple crest is above the track of the vortex that is carried by the flow 
after it is ejected. This justifies the poor agreement between the numerical and experimental 
results in the figure 11 (iv). 
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Fig. 12. Computed vorticity field (s-1) at different phases of the flow. The lower levels of the 
measurements over the ripple crest and trough are marked  
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7. Conclusion 

Assuming that the fluid is in a randomly unsteady turbulent state and applying time 
averaging to the basic equations of motion, the fundamental equations of incompressible 
turbulent motion are obtained. A three-dimensional form of conservation equations for a 
single Reynolds stress and for the turbulent kinetic energy is derived. However, as the full 
three-dimensional form of equations is very complex and not easy to solve, with many 
unknown correlations to model, other much simpler one- and two-dimensional boundary 
layer forms of these relations are derived. A brief discussion about numerical models based 
on control volumes and finite difference approximations is presented to solve 1DV versions 
of the one- and two-equation rough turbulent bottom boundary layer model of the K-L type, 
and of the 2DV boundary layer model. These numerical models are then used to calibrate 
general parametric formulations for the instantaneous bottom shear stress due to both a 
wave and a wave-current interaction cases. They are still used to discuss some important 
aspects, like the phase shift and the turbulence memory effects. Mathematical formulations and 
parametric approaches are extended to include the effect of suspended non cohesive 
sediments. Comparisons with experimental results show that both 1DV and 2DV boundary 
layer models are able to predict quite well the complex flow properties. However, these 
models are strictly valid for permanent flows in the fully developed turbulent regime at 
high Reynolds numbers. When the flow is oscillatory, the condition of local equilibrium of 
the turbulence is no longer completely satisfied, particularly at the time when the velocity of 
the potential flow is small. Therefore, improvements are necessary to obtain more precise 
results for moderate Reynolds numbers. 
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1. Introduction

Turbulence is of vital interest and importance to the study of fluid dynamics Pope (1990).
In classical physics, turbulence was first studied carefully for incompressible flows whose
evolution was given by the Navier-Stokes equations. One of the most celebrated results of
incompressible classical turbulence (CT) is the existence of an inertial range with the cascade
of kinetic energy from large to small spatial scales until one reaches scale lengths on the order
of the dissipationwave length and the eddies/vortices are destroyed. The Kolmogorov kinetic
energy spectrum in this inertial range follows the power law in wave number space.

E(k) ∼ k−5/3 (1)

Independently, quantum turbulence (QT) was being studied in the low-temperature physics
community on superfluid 4He Pethick & Smith (2009); Tsubota (2008). However, as this
QT dealt with a two-component fluid (an inviscid superfluid and a viscous normal fluid
interacting with each other) it considered phenomena not present in CT and so no direct
correspondence could be made.
With the onset of experiments in the Bose Einstein condensation (BEC) of dilute gases, we
come to amany bodywave function that at zero temperature reduces to a product of one-body
distributions. The evolution of this one-body distribution function ϕ(x, t) is given by the
Gross-Petaevskii (GP) equation Gross (1963); Pitaevskii (1961):

i∂t ϕ = −∇2ϕ + a(g|ϕ|2 − 1)ϕ, (2)

with the nonlinear term |ϕ|2ϕ arising from the weak boson-boson interactions of the dilute
BEC gas at temperature T = 0. Eq. (2) is ubiquitous in nonlinear physics: in plasma physics
and astrophysics it appears as the envelope equation of the modulational instability while in
nonlinear optics it is known as the Nonlinear Schrodinger (NLS) equation Kivshar & Agrawal
(2003).
The quantum vortex is a topological singularity with the wave function |ϕ| → 0 at the vortex
core Pethick & Smith (2009). A 2π circumnavigation about the vortex core leads to an integer
multiple of the fundamental circulation about the core: i.e., the circulation is quantized. Thus
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2 Will-be-set-by-IN-TECH

the quantum vortex is a more fundamental quantity than a classical vortex. In CT one has
at any time instant a sea of classical vortices with continuously varying circulation and sizes,
making it difficult to define what is a vortex. Thus there was the hope that QT (which consists
of entangled quantum vortices Feynman (1955) , while of fundamental importance in its own
right, might shed some light on CT Barenghi (2008) . Under the Madelung transformation

ϕ =
√

ρ eiθ/2, with v = ∇θ (3)

the GP Eq. (2) can be rewritten in conservation fluid form (ρ the mean density and v the mean
velocity)

∂tρ +∇ · (ρv) = 0 (4)

ρ(∂tv + v · ∇v) = −2ρ∇(g ρ− ∇
2√ρ√

ρ
). (5)

Thus QT in a BEC gas will occur in a compressible inviscid quantum fluid whose pressure now
has two major contributions: a barotropic pressure ∼ gρ2 and a s-called quantum pressure
∼ −√ρ ∇2√ρ.
In the seminal paper on QT in a BEC , Nore et. al. Nore et al. (1997) stress the Hamiltonian
nature of the GP system and performed 3D QT simulations on a 5123 grid using Taylor-Green
vortices as initial conditions. Nore et. al. Nore et al. (1997) find a transient glimmer of a
k−5/3 incompressible energy spectrum in the low-k wave number range, but later in time this
disappeared. Other groups Kobayashi & Tsubota (2007); Machida et al. (2010); Numasato et al.
(2010); Tsubota (2008)] attacked QT in GP and just recently achieved a simulation on a 20483

grid using pseudo-spectral methods Machida et al. (2010) . However, most the algorithms
of the Tsubota group introduce an ad hoc dissipative term to the GP equation. Ostensibly,
this added dissipative term damps out the very large k-modes and a hyperviscosity effect is
commonly used in (dissipative) Navier-Stokes turbulence to suppress numerical instabilities.
However the introduction of dissipation into the GP Eq. (2) may be more severe since
it destroys its Hamiltonian nature - while in CT this dissipation just augments the actual
viscosity in the Navier-Stokes equation. There are a considerable number of studies of the
effects of hyperviscosity on backscatter and bottlenecks in the kinetic energy spectrum. The
presence of ad hoc dissipation in QT can have important effects on the energy backscatter from
the large k to smaller k that is even seen in CT simulations [ref..]. They Machida et al. (2010)
find a pronounced small-k region that exhibited a Kolmogorov-like incompressible energy
spectrum of k−5/3, which after some time decayed away.
We now briefly outline the sections in this chapter. In Sec. 2 the difference between 2D and
3D CT are briefly summarized. In Sec. 3 we introduce our novel unitary quantum lattice gas
(QLG) algorithm to solve the GP equation. The untiary nature of our algorithm has several
important features: (a) it completely respects the Hamiltonian structure of the T = 0 BEC
dilute gas, and (b) it permits a determination of a class of initial conditions that exhibit very
short Poincare recurrence times. This has not been seen before in other simulations of the
GP equation because either this class of initial conditions has been missed or because the
introduction of any ad hoc dissipative terms destroy the existence of any Poincare recurrence.
In Sec. 4 we discuss our QLG simulations on 2D QT using a variety of initial conditions and
compare our findings to the recent papers of Horng et. al. Horng et al. (2009) and Numasato
et. al. Numasato et al. (2010) In Sec. 5 QLG simulations of 3DQT are presented with particular
emphasis on the energy spectra. Finally in Sec. 6 we discuss future directions of QLG.
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1.1 Coherence length, ξ
Before we summarize the differences between 2D and 3D CT we shall consider the concept of
coherence length that is very commonly introduced in low-temperature physics. In particular
we consider some of the ways the coherence length ξ is introduced for BECs and for QT. The
first is a back-of-the-envelope definition of the coherence length Pethick & Smith (2009) : it is
the length scale at which the kinetic energy is of the same order as the nonlinear interaction
term in the GP Eq. (2). Approximating ∇ ∼ ξ−1 and the nonlinear term by the asymptotic
density |ϕ| ∼ √ρ0

ξ = (
√

agρ0)
−1 (6)

A more quantitatively derived expression for ξ for1D vortices is given by Pethick & Smith
Pethick & Smith (2009) who readily show that the exact steady state solution to the GP Eq. (2)
is

ϕ(x) =
√

ρ0 tanh(x/
√
2ξ) (7)

under the boundary conditions: ϕ(0) = 0 and ϕ(x → ∞) =
√

ρ0. The coherence length
is thus the minimal distance from the singular core to the asymptotic value of the vortex
wave function. A similar result, under the same boundary conditions, hold for 2D and 3D
line vortices when one uses the Pade approximant expression of the radial part of the wave
function following Berloff Berloff (2004) . Altenatively, Nore et. la. Nore et al. (1997) base their
definition of coherence length on a linear perturbuation dispersion relation about uniform
density. As Proment et. al.Proment et al. (2010) mention, the coherence length is strictly
defined only for a single isolated vortex and to extend this to QT one assumes that

ξ = (
√

ag < ρ0 >)−1 (8)

where < ρ0 > is the spatially averaged BEC density.
The concept of coherence length becomes much more subtle for strongly nonlinear flows and
when the (initial) wave function in the simulation is not a quasi-solution of the GP equation.
For example, we shall consider random initial conditions or rescaled wave functions which
thus are no longer solutions to the GP equation because the GP equation is nonlinear. For such
problems the coherence length is at best a qualitative concept with possibly ξ = ξ(t).

2. Incompressible Classical Turbulence: 2D and 3D CT

2.1 2D CT
In 2D incompressible CT it is convenient to introduce the scalar vorticity

ω = (∇× v) · ez (9)

and write the 2D Navier-Stokes equation in the form

∂tω + v · ∇ω = −ν∇2ω (10)

In the inviscid limit, ν → 0, there are two constants of the motion - the energy E and the
enstrophy Z

2E =
∫

dr |v|2, 2Z =
∫

dr |ω|2 (11)

Under the assumption of incompressibility, isotropy and self-similarity, Batchelor (1969);
Kraichman (1967) have argued for the existence of a dual cascade in the inertial range:
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an inverse cascade of (incompressible) kinetic energy to small k while a direct cascade of
enstrophy to large k. From dimensional arguments they then predicted the spectral exponents
of the energy spectrum E(k), where E =

∫
dkE(k) :

from the energy inverse cascade to small k: E(k) ∝ k−5/3; (12)

from the enstrophy direct cascade to large k: E(k) ∝ k−3. (13)

2.2 3D CT
In 3D incompressible CT there is only one inviscid constant of the motion - the total energy.
This leads to a direct cascade of energy from large to small k with the well-known Kolmogorov
spectrum

E(k) ∝ k−5/3 (14)

When one considers compressible classical turbulence in real flows one is typically forced
into some subgrid large eddy simulation (LES) modeling. It is interesting to note that in
these models one typically requires closure schemes that will produce a Kolmogorov k−5/3

spectrum for the subgrid total kinetic energy Menon & Genin (2010)

3. Unitary quantum lattice gas algorithm for the Gross-Pitaevskii equation

3.1 The unitary algorithm
We briefly outline the unitary quantum lattice gas (QLG) algorithm for the solution of the
GP equation. Instead of employing a direct scheme to solve the GP equation we move to a
more fundamental mesoscopic level and introduce qubits on a lattice. In particular, to recover
the scalar GP equation we need to just introduce 2 qubits at each lattice site. A classical bits
can take on only one of 2 possible values, which shall be denoted by |0〉 or |1〉. However a
qubit can take on an arbitrary superposition of these two states: |q〉 = αq|0〉+ βq|1〉. To take
advantage of quantum entanglement we need to introduce at least 2 qubits per lattice site if
the unitary collision operator is restricted to entangle only on-site qubits. To recover the GP
Eq. (2), it will turn out that we will need to consider just 2 qubits per lattice site and of the
basis set of the 4 posisble states |00〉, |01〉, |10〉 and |11〉, only the subset |01〉, |10〉 are required.
We introduce the complex probability amplitudes α and β for these states |01〉, |10〉. Thus at
each cubic lattice position x we introduce the (complex) two-spinor field

ψ(x, t) =
(

α(x, t)
β(x, t)

)
(15)

and construct the evolution operator U[Ω] - consisting of an appropriate sequence of
non-commuting unitary collision and streaming operators - so that in the continuum limit
the two spinor equation

ψ(x, t + Δt) = U[Ω]ψ(x, t). (16)

will reduce to the GP equation for the 1-particle boson wave function ϕ under the projection

(1, 1) · ψ = ϕ. (17)

Consider the unitary collision operator C that locally entangles the complex amplitudes α and
β

C ≡ ei π
4 σx(1−σx) =

( 1−i
2

1+i
2

1+i
2

1−i
2

)
, (18)
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where the σ are the Pauli spin matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (19)

Now C2 turns out to be just the swap operator because of its action on the amplitudes α and
β :

C2
(

α
β

)
=

(
β
α

)
. (20)

Hence C is typically known as the square-root-of-swap gate.
The streaming operators shift just one of these amplitudes at x to a neighboring lattice point
at x+ Δx:

SΔx,0

(
α(x, t)
β(x, t)

)
≡

(
α(x+ Δx, t)

β(x, t)

)
(21a)

SΔx,1

(
α(x, t)
β(x, t)

)
≡

(
α(x, t)

β(x+ Δx, t)

)
. (21b)

The subscript γ = 0 on the streaming operator SΔx,γ refers to shifting just the amplitude α
while the subscript γ = 1 refers to just shifting the amplitude β. These streaming operators
can be expressed in an explicit unitary form by using the Paul spin matrices

SΔx,0 = n + eΔx∂x n̄, SΔx,1 = n̄ + eΔx∂x n, (22)

where n = (1− σz)/2, n̄ = (1+ σz)/2. Note that the collision and streaming operators do not
commute: [C, S] �= 0.
Now consider the following interleaved sequence of unitary collision and streaming operators

Jxγ = S−Δx,γCSΔx,γC (23)

Since |Δx| 	 1 and C4 = I, Eq.(23) yields J2xγ = I + O(Δx), where I is the identity operator.
This is because the streaming operators are O(Δx) deviations from the identity operator I. We
first consider the effect of the evolution operator Uγ[Ω(x)]

Uγ[Ω(x)] = J2xγ J2yγ J2zγe−iε2Ω(x), (24)

acting on the γ component of the 2-spinor ψ. Here ε 	 1 is a perturbative parameter and Ω is
a function to be specified later.
Using perturbation theory, it can be shown that the time advancement of ψ Yepez et al. (2009;
2010)

ψ(x, t + Δt) = Uγ[Ω]ψ(x, t). (25)

yields the spinor equation

ψ(x, t + Δt) = ψ(x, t)− iε2
[
−1
2

σx∇2 + Ω
]

ψ(x, t)+

(−1)γε3

4
(σy + σz)∇3ψ(x, t) +O(ε4),

(26)
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with γ = 0 or 1 and Δx = O(ε). Since the order ε3 term in Eq. (26) changes sign with γ, one
can eliminate this term by introducing the symmetrized evolution operator

U[Ω] = U1

[
Ω
2

]
U0

[
Ω
2

]
. (27)

rather than just a single Uγ operator.
Under diffusion ordering, Δt = O(ε2) = Δx2, the evolution equation

ψ(x, t + Δt) = U[Ω(x)]ψ(x, t) (28)

leads to the spinor equation

i∂tψ(x, t) =
[
−1
2

σx∇2 + Ω
]

ψ(x, t) +O(ε2), (29)

where the function Ω is still arbitrary. To recover the scalar GP Eq.2), one simply rescales the
spatial grid ∇ → a−1∇, contracts the 2-component spinor field ψ to the (scalar) BEC wave
function ϕ

ϕ = (1, 1) · ψ = α + β (30)

and chooses Ω = g|ϕ|2 − 1 :

i∂t ϕ = −∇2ϕ + a(g|ϕ|2 − 1)ϕ +O(ε2). (31)

Thus the QLG algorithm that recovers the scalar GP Eq,(31) in the mesoscopic 2-spinor
representation Eq.(28) with the evolution operator Eq.(27) and the component unitary
operators defined by Eq.(24). It is important to realize that there is nothing per se in the
QLG that enforces diffusion ordering - which is critical for QLG to recover the GP Eq.(2).
This diffusion ordering must be recovered numerically by appropriate choices of available
parameters and initial amplitudes.
Since the QLG is unitary, the norm of the spinor ψ is automatically conserved. However, one
finds (small) fluctuations in the mean density due to the overlap of the components of the
2-spinor

δρ̄ =
∫

dx(|ϕ|2 − |ψ|2) =
∫

dx(α†β + αβ†).

If α is kept purely imaginary and β is kept purely real (or vice versa), the overlap between
the two components vanishes and the mean density is conserved exactly. This is achieved by
introducing two modifications to the QLA algorithm described above :

• initialize the 2-spinor so that α = Re[ϕ], β = i Im[ϕ];

• replace the scalar potential function Ω by the unitary non-diagonal matrix:

ΩN =

(
cos[ΩΔt] −i sin[ΩΔt]

−i sin[ΩΔt] cos[ΩΔt]

)
,

such that ∑
γ
(ΩN · ψ)γ = e−iΩΔt ϕ, with Δt = ε2.
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NowQLG, like its somewhat distant mesoscopic cousin the lattice Boltzmann algorithm Succi
(2001), are explicit second order accurate schemes in both space and time. We have found
that QLG and lattice Boltzmann have similar numerical accuracy in 1D soliton simulations.
Moreover, it has been shown that lattice Boltzmann approaches the accuracy of spectral
methods Succi (2001). This has been attributed to the extremely small coefficient multiplying
the second order error term.
All mesoscopic algorithms have to be carefully benchmarked - particularly as there can be
some scaling requirements in order that the more general mesoscopic algorithm actually
simulates the physics of interest. In particular, we have benchmarked our 1D QLG code
against exact (theoretical) soliton solutions of the nonlinear Schrodinger equation - both scalar
Vahala et al. (2003) and vector Vahala et al. (2004) soliton collisions - of nonlinear optics.

3.2 Parallelization performance on various architectures
One important property of QLG is that at this mesoscopic level the collision operator acts only
on local data stored at the lattice site, while the streaming operator moves the post collision
data to the nearest neighbor cell. This leads to ideal parallelization on supercomputers. Its
unitary properties will permit direct encoding onto quantum computers. The scalings we
report here are for recent codes that solve the coupled set of GP equations (BEC2) or for the
T > 0 system which involves a coupling between the BEC ground state and the Bogoliubov
modes (BdG). While the BEC2 code is an immediate vector generalization of the QLG of
Sec. 2, the BdG code is a significant variation. Yepez has developed a 2-qubit QLG that now
involves all 4-qubit states with 4× 4 coupling matrices rather than the 2× 2 coupling matrices
in BEC2. The physics from these codes will be discussed elsewhere.

Fig. 1. Strong scaling of BEC2 code on IBM BlueGene/Intrepid and CRAY XT5/Jaguarpf for
various grids. The solid (blue) line is wallclock time for the BEC2 code while the dashed (red)
line is ideal timing. 100 iterations.

In strong scaling, one considers the code’s performance on a fixed grid. One increases the
number of processors and checks the wallclock time needed to do the same fixed number of
time steps as before. Ideal scaling occurs if the wallclock time decreases by 0.5 if the number
of processors are doubled. We see that the strong scaling of the BEC2-code is excellent. The
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Fig. 2. Strong scaling of the T > 0 BdG code on CRAY XT5/Jaguarpf and CRAY
XE6/Hopper II. The solid (blue) line is wallclock time for the BdG code while the dashed
(red) line is ideal timing. Some superlinear scaling is apparent. Grid 84003, 100 iterations.

GRID CORES WALLCLOCK (IDEAL: 143.6S) % PEAK

4003 64 143.6 19.5%
8003 512 144.5 19.4%
16003 4096 144.8 19.4%
32003 32768 150.8 18.6%

Table 1. Weak scaling of the BEC2 code on IBM/BlueGene Intrepid (100 iterations)

GRID CORES WALLCLOCK (IDEAL: 246.8S)
6003 216 246.8
12003 1728 245.6
24003 13824 249.6
48003 110592 266.1

Table 2. Weak scaling of the BEC2 code on CRAY XT5/Jaguarpf (100 iterations)

GRID CORES WALLCLOCK (IDEAL: 261.0S)
6003 216 261.0
12003 1728 261.8
24003 13824 263.9
36003 46656 268.4

Table 3. Weak scaling of the BdG code on CRAY XT5/Jaguarpf (100 iterations)
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GRID CORES WALLCLOCK (IDEAL: 209.2S) % PEAK

6003 216 209.2 9.5%

12003 1728 212.7 9.4%

24003 13824 212.1 9.3%

36003 46656 212.7 9.0%

40003 64000 213.3 9.1%

48003 110592 214.0

Table 4. Weak scaling of the BdG code on CRAYXE6/Hopper II (100 iterations)

dashed curve is the ideal scaling while the solid curve is our QLA code scaling. On the IBM
BlueGene/P Intrepid this has been tested to 131072 cores and on larger grids (64003) it shows
superlinear scaling (Fig. 1). Similar results are achieved on the CRAY XT5Jaguarp f , tested
to 110592 cores and grids 60003. The BdG-code, with its 4× 4 entangling matrices on the 2
qubits, shows quite strong superlinear scaling on both the CRAY XT5 and XE6, testing to
216000 cores on Jaguarp f and to 150000 cores on HopperI I (Fig. 2).
In weak scaling, one keeps the work done by each processor fixed. Thus if one doubles the
grid in each direction, then one would need to increase the number of processors by 23 in a 3D
simulations. For ideal scaling the wallclock time to completion should remain invariant. The
weak scaling of these codes are given in Tables I - IV, and again are excellent, with fluctuations
in timings typically below 5% as one moves from 216 cores to 110592 cores.

4. 2D QT

We first consider 2D quantum turbulence. From the GP Eq.2, the total energy in 2D QT is
conserved

ETOT =
∫

dx2
(
1
2

ρ|v|2 + agρ2 + 2|∇√ρ|2 − aρ

)
= const. (32)

Since the GP equation also conserves the number of particles, the last term in Eq.(32) yields
an ignorable constant. The other terms in Eq.(32) can be categorized as Nore et al. (1997)

kinetic energy: Ekin =
1
2

∫
dx2ρ|v|2 (33)

internal energy: Eint = ag
∫

dx2ρ2 (34)

quantum energy: Eqnt = 2
∫

dx2|∇√ρ|2. (35)

To examine the effect of compressibility on the GP Eq.(2), EK can be further decomposed into
its incompressible and compressible components via Helmholtz decomposition Nore et al.
(1997). Because a quantum vortex is a topological singularity, one needs to regularize the using
definitions of velocity and vorticity. In particular, one defines a density weighted velocity
q =

√
ρv and its Fourier transform to be q̃. This differs from the standard Favre averaging

used in standard compressible computational fluid dynamics (CFD) in that in QT one uses
√

ρ
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rather than ρ. Unlike CFD, in QT at the vortex core the density ρ → 0 with
√

ρv → const.. The
longitudinal component and the transverse component of q̃ are

q̃l =
k · q̃
|k|2 (36)

q̃t = q̃− k · q̃
|k|2 (37)

so that k× q̃l = 0, k · q̃t = 0. Correspondingly the compressible energy and incompressible
energy can be defined as

compressible : EC = (2π)2
∫

dk2|q̃l |2 (38)

incompressible : EIC = (2π)2
∫

dk2|q̃t|2. (39)

Consequently the energy densities of compressible and incompressible energy become

εc,ic(k) = k
∫ 2π

0
dθ| ˜ql,t(k, θ)|2, (40)

using polar coordinates k, θ. For 2DQT it is useful to introduce a renormalized vorticity Horng
et al. (2009)

ωq = (∇× [
√

ρv]) · ez. (41)

The two components of ωq are:

• (∇√ρ)× v · ez, with major contributions coming from density variations near vortices and
from sound and shock waves;

•
√

ρ∇× v · ez ∝ δ(r− r0), which pinpoints the locations of the vortices.

Consequently, the time evolution of the density weighted enstrophy, Zq =
∫

dx2|ωq|2, is an
excellent measure of the time variation in the total number of vortices present in the 2D QT.
Incompressibility and the conservation of enstrophy are crucial elements for the existence
of the dual cascade in 2D CT. However, in 2D QT, one has neither incompressibility nor
enstrophy conservation. Bogoliubov elementary excitations, permitted by the compressibility
of the quantum fluid, can create quantum vortices. On the other hand, counter-rotating vortex
pairs can annihilate each other (in CT one has the merging of like-rotating vortices). Lacking
the conservation of enstrophy due to compressibility, 2DQT does not necessitate dual cascade.
Another important feature of the GP Eq.(2) is that it is Hamiltonian with total energy
conserved. Thus we are guaranteed that after a sufficiently long time, the systemwill return to
a state that is very close to its initial state. For nearly all continuous Hamiltonian systems, this
recurrence time TP is effectively infinite. However Tracy et al. (1984) has demonstrated that
in the 1D NLS (i..e the GP) system the Poincaré recurrence time can be unexpectedly short for
certain initial manifolds. Arnold’s cat map is an invertible chaotic map of a torus onto itself
which is ergodic, mixing and structurally stable and it exhibits a short Poincaré recurrence
time. To visualize such a recurrence under the Arnold cat map, we discretize a sample 2D
square picture into m × m segments. Each segment is indexed with its ‘coordinate’ [qt, pt],
with t = 1....m. The Arnold cat map is applied to these segments:

qt+1 = Mod(2qt + pt,m) (42)

pt+1 = Mod(qt + pt,m). (43)
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These segments are then patched together to form a new picture according to their updated
coordinate [qt+1, pt+1]. We now consider the effect of pixel resolution on the Arnold cat map
by considering m = 74 and m = 300. For m = 74 we find Poincaré recurrence after TP = 114
iterations, Fig.3, while for the higher resolution m = 300, TP = 300 iterations, Fig.4. What is
quite interesting is the image after t = TP/2 iterations: for the low resolution run, m = 74 there
is a point inversion, Fig.3 (b) , while there is no point inversion for the high pixel resolution
m = 300, Fig.4 (b). However, the Arnold cat map exhibits quite complex characteristics with
pixel resolution. For example, at resolution m = 307, one does see a point inversion of the
image at t = TP/2 = 22.

(a) t=0 (b) t=57 (c) t=114

Fig. 3. Poincaré recurrence under the Arnold cat mapping (I). Picture resolution: 74× 74
pixels. Poincaré recurrence time TP = 114. Notice at the semi-Poincaré time t=57, the picture
is almost a point inversion of the initial condition.

(a) t=0 (b) t=150 (c) t=300

Fig. 4. Poincaré recurrence under the Arnold cat mapping (II). Picture resolution: 300× 300
pixels. Poincaré recurrence time TP = 300. At the semi Poincaré time, the picture shows no
strong symmetry to the initial condition.

In our simulations of 2D QT we encounter unexpected short Poincaré recurrence time
provided that the ratio between the time-averaged internal energy and averaged kinetic
energy is sufficiently small:

γ = 〈Eint(t)〉 / 〈Ekin(t)〉 � O(10−1) (44)

The plots of amplitude, vorticity and phase in the following sections will adopt the "thermal"
scheme: blue stands for low values while red stands for high values.

4.1 Poincaré recurrence in 2D QT
4.1.1 Four vortices with winding number 1 embedded in a Gaussian background BEC
For the first set of simulations, we study the evolution of a set of vortices embedded in a
Gaussian BEC background. Periodic boundary conditions are assumed. The initial wave
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function takes the form of products of individual quantum vortices, modulated by the
inhomogeneous Gaussian background:

ψ(r) = h e−a wg r2 ∏
i

φi(r− ri).

φi = tanh(
√

a|r− ri|)ei n Arg(r−ri) is the approximatedwave function of a single 2D vortex with
winding number n. Vortices with opposite charge, e.g. n = 1 and n = −1, are interleaved
to form a vortex array that satisfies the periodic boundary conditions. Fig.5 illustrates the
amplitude, density weighted enstrophy and phase of the initial wave function. The vortices
can be identified by two methods: a) peaks in the vorticity plots or b) the end points of the
branch cuts in the phase plots. For example, in Fig. 5(c), vortices with positive charge (phase
varying from −π to π counter-clockwise around the singularity) are encircled in black while
those with negative charge (phase varying from −π to π clockwise around the singularity)
are encircled in white. In this simulation, grid size is 512 and the total number of iteration

(a) amplitude |ψ| (b) vorticity ωq (c) phase θ

Fig. 5. Four vortices with winding number 1 embedded in a Gaussian background.
h = 0.05, a = 0.01,wg = 0.01, g = 5.0. Distance between vortices is L/4 with L being grid size
512. Since winding number is 1, the wave function’s phase undergoes ±2π change around
the singularities.

steps is 50000. The ratio parameter γ = 0.018. A recurrence structure is clearly visible via
the evolution of internal energy, Eint(t), c.f. Fig.6. To further investigate such structure, we

Fig. 6. Evolution of internal energy for winding number 1. The similarities exhibited by the
two peaks around t=21000 and t=41900 clearly indicates a periodical structure.

plot the wave function’s amplitude, vorticity and phase distribution. At Poincaré recurrence
time TP = 41900, the wave function recovers the initial condition except for some background
noise. At semi-Poincaré recurrence time, t = TP/2 = 21000, the wave function would be the
same as initial condition if the origin of domain was shifted by (L/2, L/2). This resembles
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the appearance of up-side-down point inversion pattern of the Arnold’s cat mapping at a
resolution of 74-pixels.

(a) |ψ|,t=0 (b) t=10500 (c) t=21000 (d) t=31300 (e) t=41900=TP

(f) ωq,t=0 (g) t=10500 (h) t=21000 (i) t=31300 (j) t=41900=TP

(k) θ,t=0 (l) t=10500 (m) t=21000 (n) t=31300 (o) t=41900=TP

Fig. 7. Poincaré recurrence for vortices with winding number n = 1. At Poincaré time
TP = 41900, all three distributions replicate the initial state except for some background
noise, such as the small vortices at the boundaries appearing on the phase plot (o). At the
semi-Poincaré time, due to periodic boundary conditions, the system is almost identical to its
initial state provided the origins shift by (−L/2,−L/2), i.e., a point inversion. Grid length
L = 512.

4.1.2 Four vortices with winding number n = 2 embedded in a Gaussian BEC background
Vortices with winding number n = 2 are energetically unstable and will rapidly split into two
n = 1 vortices. The Poincaré recurrence for winding number n = 2 case should be viewed
as reproducting the state immediately following the vortex splitting. In this simulation, the
energy ratio γ = 0.0036, which is much smaller than for the winding number n = 1 case due
to the rotation induced by more vortices. The recurrence structure is most clearly visible via
the evolution of the internal energy, Fig.8. With more vortices present in the system, there
is more energy exchange between vortices and sound waves. Therefore when the Poincaré
recurrence occurs, more background noise is to be expected, and is seen in Fig.9.
One interesting observation in this simulation is that Kelvin-Helmholtz instability is
important for vortices generation as suggested in Blaauwgeers et al. (2002); Henn et al. (2009).
When counter-rotating vortices approaches each other, in the regions between the vortex
cores the velocity gradient can reach a certain critical value and trigger the Kelvin-Helmholtz
instability. This instability will create pairs of counter-rotating vortices. As the number
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Fig. 8. Evolution of internal energy for winding number 2. Around t ∼ 21000 and t ∼ 41900,
internal energy reaches peaks. Comparing with winding number 1 case, more fluctuation is
observed and the peaks are much narrower. This is caused by the high density of number of
vortices and the frequent annihilation and creation of counter-rotating vortex pairs.

(a) |ψ|,t=0 (b) t=10500 (c) t=21000 (d) t=31300 (e) t=41900

(f) ωq,t=0 (g) t=10500 (h) t=21000 (i) =31300 (j) t=41900

(k) θ,t=0 (l) t=10500 (m) t=21000 (n) t=31300 (o) t=41900

Fig. 9. Poincaré recurrence for winding numbern =2. At the semi-Poincaré time, the wave
function approximates the initial condition with shift in the origins. At t = 41900, the wave
function bears a similar structure as at t = 0, but with more noise.

of vortices increases in the system, the probability for Kelvin-Helmholtz triggered vortex
generation increases. Fig.10 demonstrates such a process.

4.1.3 Random phase initial condition
In this simulation, the initial wave function features a constant amplitude and random phase
ψ(r) = h eiθ(r). Bicubic interpolation is adopted to produce random phase which satisfies
periodic boundary condition, c.f. Keys (1981). Under this interpolation, a 2D function
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(a) θ, t=10500 (b) θ, t=10600

Fig. 10. Vortices generation via the Kelvin-Helmholtz instability. The region depicted in
these plots is a blow-up of [−256,−128]× [−128, 128]. (a) phase θ at t=10500; (b) θ at t=10600.
At t = 10600, a new pair of counter-rotating vortices (pointed out by the black arrows) are
generated between neighboring counter-rotating vortices.

defined on a unit square is approximated by polynomials: p(x, y) =
3

∑
i=0

3

∑
j=0

ai,jxiyj. The

coefficients ai,j are determined by the enforced continuity at the corners. Since there are
16 unknown coefficients, 16 equations are needed to determine these ai,j. Usually one can
enforce continuity for p(x, y), ∂x p(x, y), ∂y p(x, y), ∂x,y p(x, y). To generate random phase in
the domain L2, the following procedure is followed:

• Discretize the domain into m×m squares. m here is the level of randomness;

• Generate 4 pseudo-random numbers at the 4 corners of each sub-square. These random
numbers correspond to p, ∂x p, ∂y p, ∂x,y p at the corners of this sub-square;

• Enforce periodicity at the domain boundaries;

• Solve ai,j belonging to each single sub-square.

For a grid of 5122 we consider a randomness level m = 8. The random phase wave function
is dynamically unstable. Sound waves are immediately emitted and create quantum vortices.
Typically these vortices will decay away and the GP system tends to a thermal equilibrium,
as demonstrated by Numasato et al. (2010). However, if the initial condition is chosen such
that energy ratio γ 	 1, a Poincaré recurrence emerges. In our simulation, γ = 0.00287 and
number of iteration is 100000. From the energy evolution plot, Fig.11, the Poincaré recurrence
time can be clearly identified by the abrupt energy exchanges (i.e., the spikes).
The first spike in Fig.11 appears around t = 21000, with the second at t = 41900. These are just
the semi-Poincaré and Poincaré times. One thus expects the phase distribution of the wave
function at t = 0, t = 10500, t = 21000 and t = 41900 to illustrate the recurrence, c.f. Fig.12.
What is remarkable is that the randomly distributed vortices suddenly disappear from the
system at TP/2 and TP. At t = 41900, the phase distribution is very close to the initial state
despite a constant shift in the central region. In Fig.13 we have plotted the density-weighted
vorticity at various times: there are no vortices at t = 0 or at TP/2, (e), although a considerable
amount of sound waves.
As energy ratio γ increases, the strength of the Poincaré recurrence is weakened by noise.
Fig.14 demonstrate how the Poincaré recurrence is lost as γ increases. When γ = 0.0567,
one still can observe the depletion of vortices from the system at TP/2 = 21000, however, at
TP = 41900, the initial condition, which is vortex free, can not be reproduced. For γ = 0.133,
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(a) (b)

Fig. 11. Energy evolution of the GP system with random phase initial condition. (a):
evolution of energies (EK , EQ, ET). Internal energy is negligible compared to the kinetic
energy EK . (b) evolution of incompressible (red), EIC, and compressible kinetic energy (blue),
EC.

(a) θ(r) at t=0 (b) t=10500 (c) t=21000 (d) t=41900

Fig. 12. Poincaré recurrence with random phase initial condition. At t = 10500, many
randomly distributed vortices can be identified via the branch cuts. At t = 21000 and
t = 41900, no vortices exist in the system since there are no branch cuts. There is an induced
phase shift seen in the color scheme of the phase plots at t = 0 and t = 41900, but the
geometric patterns are the same.

no trace of a short Poincaré recurrence can now be found.
It needs to be pointed out that in our simulations, the Poincaré recurrence is characterized
by abrupt energy exchange EK and EQ as well as among the compressible and incompressible
components of the kinetic energy, EC and EIC. Therefore such phenomena can not be analyzed
via standard turbulence theories invoking things like inverse cascades....

4.2 Energy cascade in 2D QT
For the simulations with vortices initially embedded in an Guassian BEC background, a k−3

power law is found ubiquitously in the compressible, incompressible and quantum energy
spectra whenever vortices are present in the system. Fig.15 describes the time evolution of the
incompressible energy spectrum ksIC . The linear regression fit is over k ∈ [50, 100]. Simulation
grid 5122.
In the time interval around t ∼ 24500 for winding number n = 1 embedded vortices, we
examine the sudden drop in the spectral exponent sIC. In Fig.16, the linear regression fit for the
incompressible kinetic energy spectrum is made over the wave number interval k ∈ [50, 100].
At t = 24400 and t = 24600, vortices are present in the system and the spectrum exponent
sIC ∼ −3. At t = 24500, when all the vortices are depleted, the incompressible kinetic energy
spectral exponent decreases to sIC = −5.828. This could well indicate that the existence in
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(a) n = 1, t = 0 (b) t = 200

(c) t = 20200 (d) t = 20800

(e) t = 21000 = TP/2 (f) t = 21100

Fig. 13. The evolution of the vorticity |ω(x, t))|. At a quantum vortex ω(x) ∼ ffi(x− xi). At
t = 0, the initial conditions for the wave function ϕ =

√
ρ exp(iθ) are ρ = const and θ

random. Thus there are no quantum vortices at t = 0. Very rapidly vortices are born. The
vortices are annihilated at t = TP/2. Grid 5122. TP scales as L2, diffusion ordering,
independent of whether 2D or 3D.
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(a) (b)

(c) (d)

Fig. 14. Loss of Poincaré recurrence. (a) evolution of ET , EK , EQ and EI , γ = 0.0567; (b)
evolution of ET , EK , EQ and EI , γ = 0.133; (c) evolution of enstrophy Zq, γ = 0.0567; (d)
evolution of enstrophy Zq, γ = 0.133. Depletion of vortices can be identified from the sharp
decrease of enstrophy.

(a) winding number n = 1, sIC(t) (b) winding number n = 2, sIC(t)

Fig. 15. Time evolution of the incompressible kinetic energy spectrum sIC. The red
horizontal line indicates the k−3 power law. For winding number n = 1, there are spikes in
the slope with sIC >> 3 in many instances. While for winding number n = 2 the variation in
sIC is greatly reduced.
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(a) t=24400, θ(r) (b) t=24400, sIC = −3.005

(c) t=24500 (d) t=24500, sIC = −5.828

(e) t=24600 (f) t=24600, sIC = −3.357

Fig. 16. Phase plot and the incompressible energy spectrum round t ∼ 24500. At t = 24400
and t = 24600 there are branch cuts and vortices in the BEC with spectral exponent sIC ∼ −3.
But at t = 24500, no branch cuts exist in the phase plot, indicative of no vortices in the
system. The incompressible spectrum exhibits a discontinuity in the high-k region with a
strong decrease in the exponent, sIC ∼ −5.8.

the incompressible kinetic energy spectrum of k−3 power law in the high-k region could be
the by-product of the spectrum of a topological singularity - at least in 2D QT. It should be
remembered that in 2D QT there can be no quantum Kelvin wave cascade since the quantum
vortex core is just a point singularity, unlike 3D QT where the vortex core is a line or loop.
To examine the spectral exponents of the compressible and incompressible kinetic energies
in more detail we now discuss some high grid resolution runs: (a) grid 327682 with random
phase initial conditions, and (b) grid 81922 with winding number n = 6 linear vortices in a
uniform BEC background.
(a) For the 327682 run, we choose initial conditions similar to Numasato et al. (2010), with
parameters yielding a ’coherence length’ ξ = (a g |ψ0|2)−1/2 = 33.33 - even though, of course,
initially there are no vortices in the system because of the random phase initial condition for
the wave function.
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(a) (b)

Fig. 17. (a) The time evolution of the kinetic, quantum, internal and total energies on a
327682 grid with random phase initial condition. (b) Evolution of theincompressible energy
(red) and compressible energy (blue).

On this 327682 grid we performed a relatively short run to tmax = 15000. The evolution of the
kinetic, quantum, internal and total energies are shown in Fig.17. Based on the time evolution
of the energies, the dynamics can be broadly categorized into two stages: (I) generation of
vortices and (II) decay of vortices. In stage (I), the compressible energy decreases rapidly
while the incompressible energy increases rapidly. Thus a significant amount of energy in the
sound waves is transformed into incompressible energy induced by the rotational motion
of vortices. In stage (II), the randomly distributed vortices disappear. The energy of the
vortices is transferred into sound waves through vortex-vortex annihilation. Note that in this
stage, the only major energy exchange occurs between the incompressible and compressible
energies while the quantum and internal energies remain almost constants. The spectra for
incompressible and compressible energy at t = 8000 is given in Fig.18.
At large-k region (k > 3000), a k−3 power law is present which can be interpreted as result of
FFT of quantum vortices. It is interesting to notice that at k ∼ kξ , e.g. k ∈ [700, 1200], a k−4

power law is observed. We sampled the incompressible energy spectra every 50 iteration steps
between 6000 < t < 10000 within a wave number window k ∈ [800, 1200]. The time averaged
slope 〈sIC〉 = −4.145± 0.066. This is in good agreement with the results obtained in Horng
et al. (2009). This k−4 power law can be interpreted as the result of dissipation of randomly
distributed vortices, as suggested in Horng et al. (2009). However, in low-k region (region
I and II in Fig.18(b) and Fig. 18(c)) where semi-classical Kolmogorov cascade is expected,
we did not observe the k−5/3 power law. This could be attributed to the compressibility of
quantum fluid.
Finally, we consider the case of 12 vortices of winding number n = 6 on an 81922 grid. The
wave function is rescaled so that it is not a quasi-eigenstate of the GP Eq. (2). This will lead
more quickly to turbulence. The compressible kinetic energy spectrum is shown in Fig.19(a)
and clearly exhibits a triple cascade: a small-k region with spectral exponent sC = −1.83,
an intermediate-k region with exponent sC = −8.1, and a large-k region with exponent
sC = −2.85. We will comment on this triple cascade spectrum more when we discuss QT
in 3D. In Fig.19(b) we plot the incompressible kinetic energy spectrum and notice the dual
cascade region: for high-k we see the ubiquitous exponent sIC = −2.93 while for lower-k,
the exponent becomes similar to the Saffman exponent, sIC = −4.0. The kξ at which we have
this dual spectrum meet is around the join of the steep intermediate range spectrum with the
k−3 spectral tail. We shall see this also in 3D QT.
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(a) (b)

(c) (d)

Fig. 18. (a): The incompressible spectrum Einc(k) (red) and compressible spectrum Ecomp(k)
(blue) on a 327682 grid at t = 8000. The dashed vertical line indicates the location of kξ , based
on the qualitative notation of the coherence length ξ. The encircled dip in the compressible
energy propagates towards the lower-k region, resembling a backward propagating pulse.
(b) Incompressible kinetic energy spectrum ain Region I (k � 0.01kξ ) and Region II
(0.01kξ � k � 0.1kξ ). The spectral exponents are sIC = +2.34 (red line) and sIC = +0.65
(green line). (c) Incompressible energy spectrum in Region II and Region III (0.1kξ � k � kξ ).
Spectral exponents are: sIC = 0.65 (green line); sIC = −4.17 (purple line). (d) Incompressible
energy spectra in Region III and Region IV (kξ � k). Spectral exponents are: sIC = −4.17
(purple line) and sIC = −3.03 (black line).

5. 3D QT

The major differences between 2D and 3D CT is in the behavior of the vorticity vector. In 2D,
the vorticity is always perpendicular to the plane of motion while in 3D the vorticity vector
can have arbitrary orientation. Here, in 3D we will employ variants of a set of linear vortices
following the Pade approximant methods of Berloff Berloff (2004). For winding number n = 1
, using cylindrical polar coordinates (r, φ, z), a linear vortex that lies along the z-axis (and
centered at the origin) is given by

ϕ(r) = g−1/2eiφ

√
11a r2(12+ a r2)

384+ a r2(128+ 11a r2)
= g−1/2 ϕ0(r) eiφ, (45)
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(a) compressible kinetic energy, t = 230000 (b) incompressible kinetic energy, t = 230000

Fig. 19. The (a) compressible kinetic energy spectrum and (b) incompressible kinetic energy
spectrum for winding number n = 6 vortices in a uniform BEC gas. Grid 81922. Notice the
triple cascade region for the compressible energy spectrum and the dual cascade spectrum
for the incompressible energy.

with |ϕ| → 1/
√

g, and |ϕ0| → 1 as r → ∞, and |ϕ| ∼ r
√

a/g as r → 0. Eq.(45) is an
asymptotic solution of the GP Eq.(2). For this isolated linear vortex, the coherence length,
from Eq. (6), ξ ∼ 4/

√
a. This is one of the reasons for introducing the factor a into the GP

Eq.(2): a small a permits resolution of the vortex core in the simulations. If one starts with
a periodic set of well-spaced non-overlapping Pade asymptotic vortices (clearly, of course,
this will be dependent on the choice of the parameter a and the grid size L of the lattice) an
asymptotic solution of the GP Eq.(2) is simply a product of the shifted ϕ0’s , weighted by
g−1/2. The system will evolve slowly into turbulence because this initial state is very weakly
unstable. For these wave functions the coherence length is initially fairly well defined. On the
other hand, in most of our runs, we just simply rescaled the asymptotic basis vortex function
ϕ → gσ ϕ, for some σ. Because the GP Eq.((2) is nonlinear, gσ ϕ is no longer an asymptotic
solution and the definition of coherence length becomes fuzzy.
In Fig. 20 we show a somewhat complex initial vortex core situation. The initial wave function
has winding number n = 5 and the positions of the initial line vortices are chosen so that
there is considerable overlap of the wave functions around the center of the domain. In this
plot we show not only the phase information on the vortex core isosurfaces but also the phase
information on the boundary walls. On the vortex isosuface at t = 0 one can distinguish the
5 periods around the core. On the boundary walls, the intersection of the cores with the walls
gives the location of the 4 branch-point like topological singularities. Emanating from each
of these singularities are 5 branch cuts because of the chosen winding number n = 5. These
branch cuts then join the branch points. Because the n = 5 state is energetically unfavorable,
the initial state rapidly decays into 5× winding number n = 1 vortices, Fig. 20(b). It is
tempting to identify the wave structures on the vortices as quantum Kelvin waves. Sound
waves can also be identified on the boundaries. Near the center of the lattice, where there was
initially considerable overlap of the vortices, many vortex loops have now formed.

5.1 Poincare recurrence for certain classes of initial conditions
As in 2D, a class of initial conditions will also be found for which the Poincare recurrence
time is very short. The definitions of the incompressible and compressible kinetic energy,
the quantum energy and the internal energy are immediate generalizations of those given in
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(a) n = 5, t = 0

(b) n = 5, t = 3000

Fig. 20. The |ϕ| isosurfaces very near the vortex core singularity for winding number n = 5:
(a) t = 0, (b) t = 3000 . Phase information is given on both the vortices and the boundary
walls. The winding number n = 5 is evident from both the 5-fold periodicity around the each
vortex as well as the 5 branch cuts emanating from each branch point on the boundary. By
t = 3000, (b), the 5-fold degeneracy is removed with what seem like quantum Kelvin waves
on the n = 1 cores. Basic phase coding : φ = 0 in blue, φ = 2π in red. Grid 20483
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2D. As in the 2D GP case, short Poincare recurrence will be found for initial conditions such
that Eint(0), Equ(0) << Ekin(0) with Ecomp(0) << Eincomp(0). These conditions are readily
satisfied in 3D by considering localized quantum line vortices so that ρ ∼ const. with∇√ρ ∼ 0
throughout much of the lattice. The evolution of a set of 3× 16 linear vortices in the 3 planes
and are examined for winding numbers n = 1 and n = 2, Fig. 21. Phase information is shown
on the boundary walls: φ = 0 - blue, φ = 2π - red. First consider the case of winding number
n = 1. At t = 0, the phase information on the straight line vortex cores are clearly identified
on their intersection with the boundaries. The corresponding branch cuts join the 48 branch
points. A snapshot of the vortex isosurfaces is shown at t = 84000 and shows strong vortex
entanglement with many vortex loops - basically a snapshot of a quantum turbulence state.
However by t = 115000 we see a point inversion of the Poincare recurrence of the initial line
vortices at t = 0, as was also seen in 2D GP flows. The full Poincare recurrence occurs around
t = 230000, (d). The kinks along the the vortex cores may be quantum Kelvin waves: since
one outputs at discrete time intervals, one is not at the exact TP.
The robustness of the Poincare recurrence time is further exhibited by considering the
evolution of 48 quantum vortices with winding number n = 2. The two-fold degeneracy
translates into a more complex phase on the boundary walls, as can be seen on comparing (e)
with (a) in Fig. 21. At t = TP = 230000, one sees considerable very small scale vortex loops
that have arisen from the splitting of the confluent degeneracy although the overall structure
of the line vortices can be seen globally seen. The phase information on the boundaries are
only a slight perturbation from those initially. The grid for these runs was 12003.
For winding number n = 2 we show the details of the isosurfaces at the semi-Poincare
recurrence time t = 115000 with phase information on the boundaries, and from a slightly
different perspective. Also we show a detailed zoomed-in isoruface plot of the vortex cores at
the Poincare recurrence time t = 230000 with phase information on the vortices themselves,
Fig.22.
As in 2D, the signature of the occurrence of the Poincare recurrence can be seen in the
evolution of the kinetic and quantum energies as a function of time, Fig. 23. The total
energy is very well conserved throughout this run, tmax = 250000, by our unitary algorithm
on a grid 12003: ETOT = const. For the parameters chosen here the internal energy is
negligible. Note that the peaks in the kinetic energy are well preserved for vortices with
winding number n = 1:Ekin(0) ≈ Ekin(t = 115000) ≈ Ekin(t = 230000) ≈ · · · . However,
for line vortices with winding number n = 2, there is a gradual decay in the peak in the
kinetic energy Ekin(0) ≥ Ekin(t = 115000) ≥ Ekin(t = 230000) ≥ · · · . This also explains
why the Poincare recurrence in the isosurfaces for winding number n = 2 is not as clean
as for winding number n = 1. Also it can be seen that in the evolution of Ekin the vortex
motion is much more turbulent for winding number n = 2. Since the internal energy for
these runs is so low, the quantum energy evolution is the complement of kinetic energy
(ETOT = const. = Ekin(t) + Equ(t) + Eint(t)). It should be noted that the time evolution
of Ekin(t) and Equ(t) (and, of course, Eint(t)) are determined directly from their definitions,
Eq.(33) and their sum then gives us the (conserved) total energy.
We note the loss of the semi-Poincaré time as the pixel resolution of the Arnold cat is increased
from 74 to 300× 300 yet find the persistence of the semi-Poincaré time for grid resolution from
5123 to 12003. Presumably this is because the QLG algorithm strictly obeys diffusion ordering
so that TP on a 5123 grid occurs at TP = 41775 and at TP = 230000 on a 12003 grid. (Diffusion
ordering would give t = 229477). There is no such physics scaling laws in the Arnold cat map.
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(a) n = 1, t = 0 , 48 linear
vortices,

(b) n = 1, t = 84000

(c) n = 1, t = 115000 (d) n = 1, t = 230000

(e) n = 2, t = 0 , 48 linear
vortices

(f) n = 2, t = 230000

Fig. 21. The evolution of quantum core singularities from an initial set of 48 straight line
vortices. (a) winding number n = 1 and the corresponding wall phase information at t = 0,
(b) winding number n = 1 isosurface cores at t = 84000. (c) winding number n = 1 isosurface
cores at t = 115000 = 0.5TPoin. The 2π phase changes at the core singularity intersections at
the walls is very evident. (d) winding number n = 1 isosurface cores at t = 230000 = TPoin
showing only small perturbative changes from the initial state given in (a). (e) winding
number n = 2 and the corresponding wall phase information at t = 0 showing the
confluence degeneracy. (f) The corresponding isosurface cores at t = 230000 = TPoin for
winding number n = 2. The wall phase information is a simple perturbative change to that
at t = 0, (e) - but there is much small scale vortex loops that has evolved due to the initial
confluent degeneracy . Phase coding : φ = 0 blue, φ = 2π red. Grid 12003
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(a) n = 2, t = 115000 (b) n = 2, t = 230000

Fig. 22. The vortex isosurfaces for winding number n = 2 at the semi- and full Poincare
times: (a) t = 115000 with phase information on the boundaries and at a different
perspective, (b) t = 230000 with phase information on the isosurfaces |ϕ| = const.. Phase
coding : φ = 0 blue, φ = 2π red. Grid 12003

5.2 Energy spectra on 12003 grid
We first determine the incompressible and compressible kinetic energy spectrum for the initial
profiles considered in Fig. 24 . Nearly all the kinetic energy initially is incompressible.
Very quickly the spectra tend to quasi-steady state, with a typical Ecomp(k) and Einc(k)
spectrum as in Fig. 25 Forwinding number n = 1 the incompressible spectrum Einc(k) exhibits
two spectral domains k−α : for very large k (k > 100) the spectral exponent α ∼ 3.05, while
in the intermediate k range (15 < k < 50) one finds α ∼ 5.0. The compressible kinetic energy
spectrum Ecomp(k) exhibits three spectral regions: a very fuzzy large k region, preceded by
a steep spectral region which then merges into the small k region. It is interesting to note
that around the wave number kξ ∼ 70 at which the steep compressible spectral exponent
(typically α > 7) joins to the large k spectrum, we find the switch over in the incompressible
spectral exponents. We have noticed this in basically every simulation we have performed
(and grids up to 40963). For vortices with winding number n = 2, the kinetic energy spectra
are much cleaner, presumably because the vortex entanglements are stronger and hence the
QT is stronger. For the incompressible spectrum Einc(k) one again sees two spectral cascade
regions: for k > kξ the spectral exponent is α ∼ 3.07 while for k < kξ , the exponent
α ∼ 3.90. For the compressible spectrum, we find three spectral energy cacades: for very low k
(5 < k < 30) a Kolmogorov-like cascade with exponent α ∼ 1.67, with a steep spectra decay
followed for k > kξ a compressible kinetic energy with exponent α ∼ 3.28. (The total kinetic
energy spectrum has the exponents α ∼ 1.64 for low k, and α ∼ 3.17 for large k). The crossover
kξ ∼ 70− 90.
Somewhat surprising, we find a time interval during which we loose the incompressible
kinetic energy spectrum Einc(k) ∼ k−3 for winding number n = 1 vortices. In particular,
in the time interval 81400 < t < 84300 - except for very brief transient reestablishment of the
k−3 spectrum - we find spectra as shown in Fig. 26. In Figs. 26 (b)-(d) there is a sharp drop
in the incompressible energy spectrum for wave numbers k > 100, except for a very brief
transient recovery around t ∼ 83000. There is also a sharp cutoff in the compressible spectrum
for k > 500. Around these intermittencies, the incompressible kinetic energy spectrum also
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(a) n = 1

(b) n = 2

Fig. 23. The time evolution of the Ekin(t) (in blue) and Equ(t) (in red) for 0 ≤ t ≤ 250000 for
(a) Winding Number n = 1, and (b) Winding Number n = 2. Grid 12003.

exhibits a triple cascade k−α with α ∼ 3.7 for small k, an α ∼ 6 for the intermediate cascade,
and α ∼ 3.0 for the large-k cascade. At the intermittency, the large-k exponent increases to a
noisy α ∼ 5.2 as well as a steeped intermediate wave number exponent.
To investigate the cause of this intermittent loss of the incompressible k−3 spectrum, we then
examined the vortex isosurfaces around this time interval, Fig.27.
One notices that the loss of the k−3 corresponds to the apparent loss of vortex loops, i.e., of
vortices. This would be consistent with the assumption that the incompressible kinetic energy
spectrum of k−3 in the very large-k regime is due to the Fourier transform of an isolated
vortex Nore et al. (1997). As the vortex loops are reestablished, so is the incompressible k−3

kinetic energy spectrum. An alternative but somewhat more speculative explanation rests
on the assumption that the incompressible k−3 spectrum is due to the quantum Kelvin wave
cascade on the quantum vortices. As the quantum vortex loop shrink topologically, the Kelvin
waves are inhibited and hence the loss of the k−3 spectrum. Moreover, if one looks at the time
evolution of the mean kinetic Ekin(t) and quantum Equ(t) energies one notices that this loss
of the vortex loops occurs around the t ∼ 82000 around which the Ekin(t) has a secondary
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(a) n = 1, t = 0 (b) n = 2, t = 0

Fig. 24. The initial incompressible (blue) Einc(k, 0) and compressible (red) Ecomp(k, 0) kinetic
energy spectra for (a) Winding Number n = 1, and (b) Winding Number n = 2. The linear
regression (blue dashed line) fit to the incompressible kinetic energy, Einc(k, 0) ∼ k−α is: (a)
α = 3.15, (b) α = 3.30. Grid 12003.

(a) n = 1, t = 80000 (b) n = 2, t = 80 000

Fig. 25. At t = 80 000, the incompressible (blue dots) Einc(k) and compressible (red dots)
Ecomp(k) kinetic energy spectra for (a) Winding Number n = 1, and (b) Winding Number
n = 2. The linear regression (blue dashed line) fit to the incompressible kinetic energy,
Einc(k, 0) ∼ k−α is: (a) α = 3.05, (b) α = 3.07. The intermediate k range has incompressible
kinetic energy exponents (a) α ∼ 5.0, and (b) α ∼ 3.9 - (green dashed line). The small k-range
for the compressible energy exhibits a weak Kolmogorov-like spectrum for winding number
n = 2, (b), of α ∼ 1.67 - (read dashed line). Grid 12003.
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(a) n = 1 , t = 81400

5 10 50 100 500 1000
10�5

0.001

0.1

10

1000

105

k

82 200

(b) n = 1 , t = 82200
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(c) n = 1 , t = 83400
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(d) n = 1 , t = 84000
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(e) n = 1 , t = 84200
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(f) n = 1 , t = 85000

(g) n = 1 , t = 85000

Fig. 26. 7 snapshots for winding number n = 1 of the incompressible (blue dots) and
compressible (red dots) kinetic energy spectrum at times (a) t = 81400, (b) t = 82200, (c) t =
83400, (d) t = 84000, (e) t = 84200, (f) t = 85000, and (g) t = 115000 = TP/2. There is a very
brief transient recovery of the k−3 spectrum around t ∼ 83000. Also shown in s the spectrum
at the t = TP/2 and should be compared to the initial spectrum in Fig.24(a) . Grid 12003
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(a) n = 1 , t = 78000 (b) n = 1 , t = 81000

(c) n = 1 , t = 82000 (d) n = 1 , t = 88000

Fig. 27. 4 snapshots of the winding number n = 1 singular vortex core isosurfaces at times
(a) t = 78000, (b) t = 81000, (c) t = 82000, and (d) t = 88000. The phase information (blue:
φ = 0, red: φ = 2π on the vortex core singularities clearly shows the 2π phase change in
circumnavigating the vortex core loops. At t = 82000 there is a different morphology in the
|ϕ| - isosurfaces. Grid 12003

peak. As there is another secondary peak in Ekin(t) around t ∼ (82000+ TP/2) one expects
another transient loss in the k−3 spectrum and in the vortex loops. This is indeed found to
occur around 196400 < t < 199300. For winding number n = 2 vortices, we do not find such
intermittent loss of vortex loops or any intermittent loss of the k−3 spectrum. These results are
in agreement with those found earlier in 2D QT. Moreover, there is not a similar intermittent
loss of vortex loops for 48 linear vortices with winding number n = 1 (c.f., Fig. 21(b))

5.3 Total kinetic energy spectrum for large grid simulations on 57603

We have performed simulations on 57603 grid using winding number n = 6 straight line
vortices as initial conditions. By t = 40000 one obtains the following total kinetic and quantum
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energy spectra, Fig. 28. Due to an oversight, we did not retain data for the incompressible

(a) Grid 57603, t = 40000 (b) Grid 57603, small − k

Fig. 28. (a) Total kinetic energy spectrum, ETOT(k)− (blue dots), and quantum energy
spectrum, Equ(k)− (red dots), at t = 40000 for winding number n = 6 on a large 57603 grid. 3
energy cascade regions can be readily distinguished, with both the total and quantum energy
spectra being very similar. Dashed curves – linear regression fits. (b) Linear regression fits for
different k-bands in the small-k region: for 30 < k < 200 (green dashed line), the spectra
exponent α ∼ 1.30, while for 100 < k < 250 (red dashed line), the spectral exponent α ∼ 1.68.
The standard deviation error is 0.06 in both cases.

and compressible components of the kinetic energy spectrum. Both ETOT(k) and Equ(k) have
basically the same spectral properties. One sees 3 distinct energy cascade regions k−α: a
small-k band with α ∼ 1.30, an intermediate-k band with steep slope α ∼ 7.76 and a large-k
band with α ∼ 3.00.
In Yepez et al. (2009), we tried to identify these 3 regions as the small-k classical Kolmogorov
casacde, followed by a semi-classical intermediate-k band (with non-universal exponent α)
which is then followed a quantum Kelvin wave cascade for the very large-k band. Objections
were raised against this interpretation Krstulovic & Brachet (2010); L’vov & Nazarenko (2010)
based on (a) the kinetic energy spectrum of a single isolated vortex is k−3 for all k (for a straight
line vortex all the kinetic energy is incompressible); and (b) using the standard definition of
the coherence length ξ for the parameters chosen in our simulations, ξ > 2000 – i.e., it is
claimed that we are investigating the physics of very strong vortex-vortex core overlapping
wave functions. We counter that the definition of ξ is based on a boundary value solution
of the GP equation for an isolated single vortex under the condition that the wave function
asymptotes to the background value as onemoves away from the vortex core. Our simulations
are with periodic boundary conditions and we have no pointwise convergence of our wave
function to some nice smooth ’background’ value. While it can be argued that one should
simply replace the usual background density ρ0 by its spatial average < ρ >, the definition
now of ξ becomes qualitative and does not handle large fluctuations about < ρ >. It is clear
that we cannot categorically claim that the ubiquitous k−3 spectrum for the large-k band is
due to quantum Kelvin wave cascade on single vortices - especially as this k−3 spectrum is
also seen in our 2D QT simulations and in 2D there are no quantum Kelvin waves since the
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vortex core is just a point singularity. It is possible, however, that with the co-existence of this
triple cascade region in the kinetic energy spectrum, and with the small-k region exhibiting
a quasi-classical Kolmogorov k−5/3 spectrum, that this large-k band k−3 spectrum could be
dominated by the spectrum of a single vortex as we are now at very small scales in the
problem.
We have investigated in some detail the 3D QT for winding number n = 2 on a 30763 grid.
One again finds the triple cascade region in the compressible kinetic energy spectrum, Fig.
29, (red squares), as well as in the quantum energy spectrum (gold diamonds). However the

(a) n = 1 (b) n = 2

Fig. 29. (a) Energy spectra at t = 48000 for winding number n = 2. Blue circles -
incompressible kinetic energy, red squares - compressible kinetic energy, gold diamonds -
quantum energy. A triple cascade is quite evident in both the quantum and compressible
kinetic energy spectra. These two spectra only deviate around the transition from the
medium k to large k cascade, i.e., around k ∼ 300. (b) A blow-up of the transition in the
incompressible kinetic energy pectrum from k−3.6 to k−3.0 around k ∼ 300. Grid 30723

incompressible kinetic energy (blue circles) has a slight bend in its spectral exponent around
the wave number kξ ∼ 300 from the large-k exponent of α ∼ 3.0 for k > kξ to α ∼ 3.6 for
k < kξ . This bend in the incompressible kinetic energy spectrum occurs at the kξ where the
compressible and quantum energy spectra make their transition from the intermediate-k band
large spectral exponent to the large-k band spectral exponent of α ∼ 3. It is interesting to note
similar behavior in 2D QT, Fig.18(d) and Fig.19(b). The spectral exponents for ETOT(k) are: a
Kolmogorov α ∼ 1.66 for the small-k band 15 < k < 90, a steep α ∼ 8.53 for the intermediate-k
band 180 < k < 280 and exponent α ∼ 3.04 in the large-k band.

6. Conclusion

Here we have discussed a novel unitary qubit algorithm for a mesoscopic study of quantum
turbulence in a BEC dilute gas. Since it requires just 2 qubits/lattice site with unitary collision
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operators that entangle the qubit probabilities and unitary streaming operators that propagate
this entanglement throughout the lattice, QLG has a small memory imprint. This permits
production runs on relatively few processors: e.g., production runs on 57603 grids using just
over 10000 cores. Using standard pseudo-spectral codes, the largest grids achieved so far
have been 20483 by Machida et al. (2010) - and these codes required the ad hoc addition of
dissipative terms to damp out high-k modes and for numerical stability. For BEC turbulence
this destroys the Hamiltonian structure of the GP Eq. (2) and destroys any Poincare recurrence
phenomena.
In its current formulation, it is critical that parameters are so chosen that the mesoscopic
QLG algorithm yields diffusion ordering at the macroscopic GP level. This does restrict the
choice in the values of kinetic, quantum and internal energies. If parameter choices are made
that violate the diffusion ordering then the QLG algorithm will not be simulating the GP
Eq. (2). There are various tests for the validity of our QLG solution of the GP equation: the
conservation of total energy, and the fact the the Poincare recurrence time scales as grid2 -
whether in 2D or 3D GP. This replaces the naive thought that the time for QLG phenomena
would necessarily scale as gridD, where D is the dimensionality of the macroscopic problem.
On the other hand, standard CFD algorithms have the spatial and time step independent
which, of course, is quite beneficial.
We have presented significant spectral results for both 2D and 3D QT - although their
interpretation is not straightforward and much still needs to be done in this area. Much of
the controversy surrounds the significance of the coherence length ξ and the k−3 spectrum in
the high-k region. We believe there is much new physics occurring in our QT simulations even
if the k−3 spectrum is attributed to the dominance of the spectrum of an isolated vortex: (a)
there is clear evidence in both 2D and 3D QLG of a dual cascade in the incompressible kinetic
energy spectrum, with a spectrum of k−4 followed by the k−3. This k−4 spectrum has also
been seen by Horng et al. (2009) and connection implied with the Saffman spectrum arising
from vorticity discontinuities; (b) the triple cascade in the total kinetic energy spectrum with
the small-k regime yielding a quasi-Kolmogorov k−5/3 spectrum. It is a bit strange that the QT
community is that concerned with achieving the k−5/3 energy spectrum in the incompressible
energy Einc(k) in the small k-region where the quantization of the vortex core circulation
becomes unimportant. The dynamics of the GP Eq.(2) is fundamentally compressible. In
compressible CFD simulations the emphasis changes to the total kinetic energy spectrum and
that its power law is k−5/3. However much work remains to be done on clarifying the role of
quantum Kelvin waves on the energy spectrum.
Finally, we comment on future directions of QLG. In this chapter we have restricted ourselves
to the scalar GP equation. This is appropriate for a BEC gas with spin f confined in a magnetic
well. The spin of the atom is aligned to themagnetic field and so the BEC dynamics is given by
just one scalar GP equation. However if this BEC gas is confined in an optical lattice, the spin
is no longer constrained and one now must work with 2 f + 1 GP equations. These so-called
spinor BECs yield an enormous field of future research Ueda & Kawaguchi (2010). Moreover,
the quantum vortices of a scalar BEC are necessarily Abelian vortices, but the vortices of
spinor BECs can be non-Abelian in structure. Since QT is driven by vortex-vortex interactions,
research needs to be performed to ascertain the role played by the non-Abelian in the energy
cascades. (These non-Abelian vortices have non-integer multiples of the base circulation - not
dissimilar to fractional quantum electron charge in the fractional quantum Hall effect). Other
interesting vortices are skyrmions - used by high energy physicists to model baryons.
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